Magnetic Properties and Scaling Behavior in Perovskite–like La0.7(Ba1−xPbx)0.3CoO3 System

2001 ◽  
Vol 674 ◽  
Author(s):  
Chiung-Hsiung Chen ◽  
Ting-Sheng Huang ◽  
Ming-Fong Tai

ABSTRACTIn this study, we used x-ray diffraction patterns and dc magnetic measurements to investigate the crystallographic structure, magnetic properties and scaling behavior of the distorted perovskite La0.7(Ba1−xPbx)0.3CoO3 (0 ≤ x ≤ 0.5) system with a constant ratio of Co4+/Co3+. Samples with x = 0.0 and 0.1 were crystallized in the cubic structure with a ∼ 7.76 Å whereas samples with x ≥ 0.2 were crystallized in an orthorhombic Pbnm space group with a ∼ b ∼ 5.50 Å and c ∼ 7.85 Å. For all our samples the spin-glass-like behavior were observed in low temperature and low field ranges. The Pb2+ substitution on Ba2+ site does not significantly affect the ferromagnetic transition temperature TC, but does introduce large variation in the magnetic strength. In both the ferromagnetic and paramagnetic states the minimum values of the average effective moments provided by every Co ion occur at x = 0.3. We also observed the scaling behaviors of magnetic data in all samples. The derived values of the critical exponents (β, γ, δ) were consistent with those predicted by mean field theory and a three-dimensional Heisenberg model.

2014 ◽  
Vol 16 (26) ◽  
pp. 13383-13389 ◽  
Author(s):  
Xinru Li ◽  
Ying Dai ◽  
Yandong Ma ◽  
Baibiao Huang

The electronic and magnetic properties of d-electron-based Dirac systems are studied by combining first-principles with mean field theory and Monte Carlo approaches.


2009 ◽  
Vol 23 (20n21) ◽  
pp. 4285-4296 ◽  
Author(s):  
GUO-MENG ZHAO ◽  
PIEDER BEELI

We report magnetic measurements up to 1200 K on iron-contaminated multi-walled carbon nanotube mats with a Quantum Design vibrating sample magnetometer. Extensive magnetic data consistently show a ferrromagnetic transition at about 1000 K and a ferromagnetic-like transition at about 1275 K. The ferromagnetic transition at about 1000 K is associated with an Fe impurity phase and its saturation magnetization is in quantitative agreement with the Fe concentration measured by an inductively coupled plasma mass spectrometer. On the other hand, the saturation magnetization for the ferromagnetic-like phase (at 1275 K) is about four orders of magnitude larger than that expected from the measured concentration of Co or CoFe . We show that this ultrahigh-temperature ferromagnetic-like behavior cannot be explained by ferromagnetism of any Fe -carbon phases, carbon-based phases, or magnetic impurities, but is consistent with the paramagnetic Meissner effect (orbital ferromagnetism) due to the existence of π Josephson junctions in a granular superconductor.


2017 ◽  
Vol 31 (33) ◽  
pp. 1750307 ◽  
Author(s):  
Ersin Kantar

In this study, we examine by comparing the dynamic magnetic and hysteretic properties of Ising-type endohedral fullerene (EF) with various dopant magnetic particles confined within a spherical cage. The model of EF X@C[Formula: see text] with X = spin-1/2, spin-1 and spin-3/2 is proposed to study the effect of the nature of core particle on the magnetic properties. The results were obtained by mean-field theory as well as Glauber-type stochastic dynamics, and focused on the response of thermal and hysteretic behaviors of systems. The system exhibits second- and first-order phase transitions. In three different core cases, the system also exhibits type-II superconductivity behavior with a dynamic hysteresis curves of the core. All results display magnetic properties of the EF which strongly depend on the nature of core particle. Moreover, core particle and core/shell (C–S) interaction are proposed as the basic factors affecting the magnetic properties of EF system.


Author(s):  
Philippe Laurent ◽  
Jean-François Fagnard ◽  
Philippe Vanderbemden

This work describes the design and realisation of an apparatus to measure simultaneously the AC magnetic properties and the temperature distribution on the top surface of bulk superconducting samples (up to 32 mm in diameter) in cryogenic conditions (temperature range 78-120 K). First the authors describe the experimental set-up used for simultaneous thermal and magnetic characterization of the sample. Next, the authors describe the practical considerations required for generating the large AC magnetic fields, possibly in the presence of DC fields. Then the authors present the data acquisition system allowing both temperature and magnetic data to be recorded at high a sampling rate.” The performances and limitations of the system are discussed.


2020 ◽  
Vol 89 (2) ◽  
pp. 024704
Author(s):  
Takuji Nomura ◽  
Yuji Yamamoto ◽  
Kenji Yoshii

Author(s):  
Philippe Laurent ◽  
Jean-François Fagnard ◽  
Philippe Vanderbemden

This work describes the design and realisation of an apparatus to measure simultaneously the AC magnetic properties and the temperature distribution on the top surface of bulk superconducting samples (up to 32 mm in diameter) in cryogenic conditions (temperature range 78-120 K). First the authors describe the experimental set-up used for simultaneous thermal and magnetic characterization of the sample. Next, the authors describe the practical considerations required for generating the large AC magnetic fields, possibly in the presence of DC fields. Then the authors present the data acquisition system allowing both temperature and magnetic data to be recorded at high a sampling rate." The performances and limitations of the system are discussed.


2008 ◽  
Vol 1138 ◽  
Author(s):  
Silvia Liong ◽  
Ricky Lamar Moore

AbstractThis paper discusses preparation, characterization and measurement of linear DC and AC magnetic properties of magnetite (Fe3O4) nanoparticles (size ranges of 7-50 nm and 5 microns) and polymer composites of those particulates. Selected data and analysis are taken from the PhD thesis of Liong [1]. The goal of this research is to obtain magnetic data, specifically magnetization, anisotropy and coercivity as functions of particle size. These will be used as inputs to non linear magnetic simulations and in planning for future nonlinear magnetic measurements. Magnetite nanoparticles were synthesized by chemical coprecipitation, a method that allowed for the production of samples in gram quantities. Vibrating sample magnetometry was used to measure the room-temperature DC magnetization and coercivity of the particulates. Coaxial line impedance measurements were used to measure low frequency and dispersive AC permeability of Fe3O4–polymer composites from 1 Megahertz to 10 Gigahertz. AC data are applied to infer particulate magnetic susceptibility and anisotropy field change with particle size. Particle size was calculated from XTD data and supported by TEM images.Measured DC saturation magnetization and coercivity decreased with particle dimension while anisotropy was calculated to increase. Magnetization data are consistent with models that calculate nanoparticle magnetization as a volumetric average of a spherical bulk material core and a passive outer shell. The shell thickness was calculated at 0.84 nm, very near one lattice constant of bulk Fe3O4, 0.8394 nm. Composites containing particulate volume fractions less than 20% were fabricated. Effective media theory was applied to measured AC composite permeability to extract particle magnetic properties and thereby anisotropy field, which increased by an order of magnitude from the bulk. Permeability decreased with particulate size.


Sign in / Sign up

Export Citation Format

Share Document