Heavy-Ion Damage to Magnesium Diboride Films: Electrical Transport-Current Characterization

2001 ◽  
Vol 689 ◽  
Author(s):  
H. R. Kerchner ◽  
C. Cantoni ◽  
M. Paranthaman ◽  
D. K. Christen ◽  
H. M. Christen ◽  
...  

ABSTRACTThe use of magnesium diboride in superconducting magnets, transmission lines, or other large-scale applications depends on the transport-current characteristics of this material in magnetic field, and how they compare to the properties of conventional and high-temperature superconductors. Thin films of boron grown on sapphire substrates during electron-beam evaporation were exposed to Mg vapor to produce 0.5-μm thick layers of the metallic compound MgB2. Four-terminal measurements of their voltagecurrent relations, E(J), were carried out before and after exposure to Bφ =1-T and higher doses of 1-Gev U ions. These doses lowered critical temperatures Tc≈39 K less than 0.1 degree, raised the normal-state resistivity, and reduced the loss-free critical current density, Jc. Higher doses added little. The reduction of current densities was greater in the presence of applied magnetic field greater than 0.1 T.

2021 ◽  
Vol 11 (6) ◽  
pp. 2741
Author(s):  
Sergey Zanegin ◽  
Nikolay Ivanov ◽  
Vasily Zubko ◽  
Konstantin Kovalev ◽  
Ivan Shishov ◽  
...  

The article is devoted to the study of losses in devices based on high-temperature superconductors of the 2nd generation. The complexity of the devices under study increases from a single rack coil to a winding assembled from several coils, and finally to an electric machine operating in generator mode. This is the way to experimentally study the behavior of 2nd generation high temperature superconductor (2G HTS) carrying a transport current in various conditions: self-field, external DC, and AC magnetic field. Attention is also paid to the losses in the winding during its operation from the inverter, which simulates the operating conditions in the motor mode of a propulsion system.


2020 ◽  
Vol 86 (5) ◽  
Author(s):  
C. Paz-Soldan

The rapidly emerging technology of high-temperature superconductors (HTS) opens new opportunities for the development of non-planar non-insulated HTS magnets. This type of HTS magnet offers attractive features via its simplicity and robustness, and is well suited for modest size steady-state applications such as a mid-scale stellarator. In non-planar coil applications the HTS tape may be subject to severe hard-way bending strain ( $\epsilon _{\textrm {bend}}$ ), torsional strains ( $\epsilon _{\textrm {tor}}$ ) and magnetic field components transverse to the HTS tape plane ( $B_{\perp }$ ), all of which can limit the magnet operating space. A novel method of winding angle optimization is here presented to overcome these limitations for fixed input non-planar coil filamentary geometry. Essentially, this method: (i) calculates the peak $\epsilon _{\textrm {bend}}$ and $B_{\perp }$ for arbitrary winding angle along an input coil filamentary trajectory, (ii) defines a cost function including both and then (iii) uses tensioned splines to define a winding angle that reduces $\epsilon _{\textrm {tor}}$ and optimizes the $\epsilon _{\textrm {bend}}$ and $B_{\perp }$ cost function. As strain limits are present even without $B_{\perp }$ , this optimization is able to provide an assessment of the minimum buildable size of an arbitrary non-planar non-insulating HTS coil. This optimization finds that for standard 4 mm wide HTS tapes the minimum size coils of the existing HSX, NCSX and W7-X stellarator geometries are around 0.3–0.5 m in mean coil radius. Identifying the minimum size provides a path to specify a mid-scale stellarator capable of achieving high-field or high-temperature operation with minimal HTS tape length. For coils larger than this size, strain optimization allows use of wider (higher current capacity) HTS tapes or alternatively permitting a finite (yet tolerable) strain allows reduction of $B_{\perp }$ . Reduced $B_{\perp }$ enables a reduction of the HTS tape length required to achieve a given design magnetic field or equivalently an increase in the achievable magnetic field for fixed HTS tape length. The distinct considerations for optimizing a stellarator coilset to further ease compatibility with non-insulated HTS magnets are also discussed, highlighting relaxed curvature limits and the introduction of limits to the allowable torsion.


2002 ◽  
Vol 16 (20n22) ◽  
pp. 3189-3192
Author(s):  
D. C. KIM ◽  
J. S. KIM ◽  
A. N. BARANOV ◽  
Y. W. PARK ◽  
J. S. PSHIRKOV ◽  
...  

Anomalous re-entrant superconducting-normal resistive transition was observed in Sr 0.4 K 0.6 BiO 3 superconductor i.e., normal – supernormal behavior as temperature is increased. Contrary to previously reported re-entrant resistive behaviors in other compounds, the re-entrant resistivity appearing at zero magnetic field in Sr 0.4 K 0.6 BiO 3 is suppressed to zero by applying an external magnetic field (H) or increasing the electrical transport current (I): an observation of a zero resistive superconducting state induced by H or I. Comparisons of the normal-state resistivity data in different samples indicate an important role that disorder in the junction barriers between superconducting grains might play on the observed re-entrant resistivity behavior. Possible physical origins of this anomalous phenomenon are discussed.


1989 ◽  
Vol 169 ◽  
Author(s):  
Y. Iye ◽  
S. Nakamura ◽  
T. Tamegai ◽  
T. Terashima ◽  
Y. Bando

AbstractExperimental studies of the resistive state of high temperature superconductors in the mixed state were carried out on thin film samples of YBa2Cu3O7‐y and Bi2Sr2CaCu2Os+y. Precise angular dependence measurements on Yba2Cu3O7‐y epitaxial film have revealed not only the critical field anisotropy with respect to the a, b, and c‐axes but also a feature associated with twin boundaries. Dependence on the angle between the transport current and the magnetic field is investigated and discussed in terms of flux dynamics in highly anisotropic layered superconductors. Peculiar behavior of the Hall effect in the resistive state is reported.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


Sign in / Sign up

Export Citation Format

Share Document