Plasmon Scanned Surface-Enhanced Raman Scattering Excitation Profiles

2002 ◽  
Vol 728 ◽  
Author(s):  
Christy L. Haynes ◽  
Richard P. Van Duyne

AbstractSince the discovery of surface-enhanced Raman spectroscopy (SERS) in 1977, scientists have come to understand the enhancement mechanism, but have been unable to consistently optimize the weak signals inherent in Raman experiments. Surface-enhanced Raman signals originate from excitation of the localized surface plasmon resonance (LSPR) of a nanostructured metal surface, thus producing concentrated electromagnetic fields at the surface of the nanostructure. Design of the nanostructured metal substrate plays an important role in understanding and optimizing SERS experiments. In this research, the size-dependent optical properties accessible by nanosphere lithography (NSL) are exploited to fabricate topographically predictable SERS-active substrates with systematically varying LSPRs. Correlated microextinction and micro-Raman measurements, as well as quantitative implementation of a Raman standard, allow significant improvements over the current method used to optimize SERS experiments. The knowledge gained in the novel plasmon scanned SERS excitation profiles clearly indicates the substrate parameters necessary for experimental optimization and promotes further understanding of the SERS enhancement mechanism.

2021 ◽  
Vol 23 (1) ◽  
pp. 291
Author(s):  
Beata Tim ◽  
Paulina Błaszkiewicz ◽  
Michał Kotkowiak

Robust and versatile strategies for the development of functional nanostructured materials often focus on assemblies of metallic nanoparticles. Research interest in such assemblies arises due to their potential applications in the fields of photonics and sensing. Metallic nanoparticles have received considerable recent attention due to their connection to the widely studied phenomenon of localized surface plasmon resonance. For instance, plasmonic hot spots can be observed within their assemblies. A useful form of spectroscopy is based on surface-enhanced Raman scattering (SERS). This phenomenon is a commonly used in sensing techniques, and it works using the principle that scattered inelastic light can be greatly enhanced at a surface. However, further research is required to enable improvements to the SERS techniques. For example, one question that remains open is how to design uniform, highly reproducible, and efficiently enhancing substrates of metallic nanoparticles with high structural precision. In this review, a general overview on nanoparticle functionalization and the impact on nanoparticle assembly is provided, alongside an examination of their applications in surface-enhanced Raman spectroscopy.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 587
Author(s):  
Zirui Wang ◽  
Yanyan Huo ◽  
Tingyin Ning ◽  
Runcheng Liu ◽  
Zhipeng Zha ◽  
...  

Hyperbolic metamaterials (HMMs), supporting surface plasmon polaritons (SPPs), and highly confined bulk plasmon polaritons (BPPs) possess promising potential for application as surface-enhanced Raman scattering (SERS) substrates. In the present study, a composite SERS substrate based on a multilayer HMM and gold-nanoparticle (Au-NP) layer was fabricated. A strong electromagnetic field was generated at the nanogaps of the Au NPs under the coupling between localized surface plasmon resonance (LSPR) and a BPP. Additionally, a simulation of the composite structure was assessed using COMSOL; the results complied with those achieved through experiments: the SERS performance was enhanced, while the enhancing rate was downregulated, with the extension of the HMM periods. Furthermore, this structure exhibited high detection performance. During the experiments, rhodamine 6G (R6G) and malachite green (MG) acted as the probe molecules, and the limits of detection of the SERS substrate reached 10−10 and 10−8 M for R6G and MG, respectively. Moreover, the composite structure demonstrated prominent reproducibility and stability. The mentioned promising results reveal that the composite structure could have extensive applications, such as in biosensors and food safety inspection.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2508
Author(s):  
Osama Nasr ◽  
Jian-Ru Jiang ◽  
Wen-Shuo Chuang ◽  
Sheng-Wei Lee ◽  
Chih-Yen Chen

In this article, we demonstrate a facile, rapid, and practical approach to growing high-quality Cu2S nanosheets decorated with Ag nanoparticles (NPs) through the galvanic reduction method. The Ag/Cu2S nanosheets were efficiently applied to the surface-enhanced Raman scattering (SERS) and photocatalytic degradation applications. The photodegradation of RhB dye with the Ag/Cu2S nanosheets composites occurred at a rate of 2.9 times faster than that observed with the undecorated Cu2S nanosheets. Furthermore, the Ag/Cu2S nanosheets displayed highly sensitive SERS detection of organic pollutant (R6G) as low as 10−9 M. The reproducibility experiments indicated that the Ag/Cu2S nanosheets composites could be used for dual functionality in a new generation of outstandingly sensitive SERS probes for detection and stable photocatalysts.


2018 ◽  
Vol 54 (17) ◽  
pp. 2134-2137 ◽  
Author(s):  
Xiaoyue Su ◽  
Hao Ma ◽  
He Wang ◽  
Xueliang Li ◽  
Xiao Xia Han ◽  
...  

For the first time SERS on organic–inorganic hybrid perovskites is explored. The enhancement mechanism is discussed according to charge transfer.


RSC Advances ◽  
2020 ◽  
Vol 10 (51) ◽  
pp. 30858-30869
Author(s):  
Phuong Que Tran Do ◽  
Vu Thi Huong ◽  
Nguyen Tran Truc Phuong ◽  
Thi-Hiep Nguyen ◽  
Hanh Kieu Thi Ta ◽  
...  

The development of improved methods for the synthesis of monodisperse gold nanoparticles (Au NPs) is of high priority because they can be used as substrates for surface-enhanced Raman scattering (SERS) applications relating to biological lipids.


Sign in / Sign up

Export Citation Format

Share Document