Physico-Chemical Characterization of Alumina Sols Prepared From Aluminum Alcoxides

1986 ◽  
Vol 73 ◽  
Author(s):  
William L. Olson

ABSTRACTAlumina sols derived from aluminum sec-butoxide (Yoldas) were characterized. The distribution of the polymer sizes within the sol, determined by gel filtration chromatography (GFC), was found to be dramatically affected by small changes in the chemical processing or preparative procedure. Aging the sol at room temperature for two weeks produced no significant change in the GFC elution curves of the alumina sol. Sols with a “milky” appearance were found to exhibit a wider distribution of polymers by GFC than transparent sols. Rotary evaporation of the sol followed by redissolution of the residue was found to change the polymer size distribution described by the gel filtration elution curves. These observations coupled with 27Al NMR spectroscopy and viscometry measurements were used to elucidate the effects of process conditions and aging on the molecular structure of the sol.

2019 ◽  
Vol 10 (3) ◽  
pp. 207-218
Author(s):  
Lidiane Schmalfuss Valadão ◽  
Caroline Dos Santos Duarte ◽  
Pedro José Sanches Filho

The peach stone is considered an agroindustrial residue originating from the industrial process of peach in halves in syrup. It does not have an adequate destination, its final disposal is incorrect and may cause contamination in the environmental compartments. In this way, the burning of this raw material as biomass enables its reuse, besides adding value to the residue. Among the processes used for the application of this residue is the carbonization process, which allows to obtain co-products with higher added value, such as pyroligneous liquid, which represents a fraction of organic compounds condensed from the smoke emitted during carbonization. The quality of the liquid depends on the process conditions and the biomass used. Therefore, the objective of this study was to characterize the sample of pyrolignous liquid obtained from the carbonization of the peach stone, on an industrial scale, qualitative and semi quantitative. Preliminary characterization (pH, conductivity, color, density and contents of tar, organic matter and acidity) and a chemical characterization by gas chromatography coupled to mass spectrometry (GC-MS) were performed. The liquid presented satisfactory results for the physico-chemical evaluations. Regarding the qualitative determination, it was possible to identify 49 compounds. Highlighting the phenols, with 44.90% of the number of compounds, mainly methoxyphenols. These are compounds with significant added value and industrial importance, indicating their use as raw material in the production of polymer resins, among other purposes.


Alergologia ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 7
Author(s):  
Mariana Vieru ◽  
Florin-Dan Popescu ◽  
Laura Haidar ◽  
Carmen Bunu-Panaitescu

2010 ◽  
Vol 35 (5) ◽  
pp. 261-267 ◽  
Author(s):  
Wissemn Gallala ◽  
Mohamed Essghaier Gaied ◽  
Borhen Kchaou

2001 ◽  
Vol 71 (3) ◽  
pp. 342-349
Author(s):  
Lucian Eva ◽  
Letitia Doina Duceac ◽  
Liviu Stafie ◽  
Constantin Marcu ◽  
Geta Mitrea ◽  
...  

The fourth generation cephalosporin antibacterial agent, cefepime, was loaded into layered double hydroxides for enhancing antibiotic efficiency, reducing side effects, as well as achieving the sustained release property. The intercalation of antibiotic into the inter-gallery of ZnAl-layered double hydroxide (LDH) was carried out using ion exchange method, by this constituting a nano-sized organic-inorganic hybrid material for a controlled release novel formulation. Although cefepime is a broad spectrum antibiotic, it has various adverse effects and a significant degradation rate. Thus, the preparation and physico-chemical characterization of nanomaterials able to intercalate this drug is an important study for medical and pharmaceutical field. The antibiotic inclusion into LDHs nanostructure was confirmed by advanced characterization techniques and the release profile of cefepime was analysed with the respect to pH of the simulated media.


2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


2015 ◽  
Vol 17 (32) ◽  
pp. 20687-20698 ◽  
Author(s):  
Serena De Santis ◽  
Giancarlo Masci ◽  
Francesco Casciotta ◽  
Ruggero Caminiti ◽  
Eleonora Scarpellini ◽  
...  

Fourteen cholinium-amino acid based room temperature ionic liquids were prepared using a cleaner synthetic method. Chemicophysical properties were well correlated with the wide range of amino acid chemical structures.


Sign in / Sign up

Export Citation Format

Share Document