Magnetic Domain Structures in CoNiFe Thin Films and Lines

2002 ◽  
Vol 738 ◽  
Author(s):  
Lucas Pérez ◽  
Oscar de Abril ◽  
Claudio Aroca ◽  
Pedro Sánchez ◽  
Eloísa López ◽  
...  

ABSTRACTThin films and arrays of lines of magnetic CoNiFe alloy have been produced by electrodeposition. A magnetic field was applied during the electrodeposition process in order to induce a magnetic anisotropy in the sample. The dependence of the magnetic properties and the magnetic domain structures on the thickness of the films is reported. In addition to this, the magnetic properties and the domain structure of a thin film and an array of lines, with the same thickness and deposited in the same conditions, have been compared. An increase in the coercivity of the array of lines has been shown.

1997 ◽  
Vol 494 ◽  
Author(s):  
R. A. Rao ◽  
D. B. Kacedon ◽  
C. B. Eom

ABSTRACTWe have grown epitaxial ferromagnetic metallic oxide SrRuO3 thin films with different domain structures on (001) LaAlO3 and miscut (001) SrTiO3 substrates. The effect of crystallographic domain structures on the magnetization and magnetoresistive behavior of epitaxial SrRuO3 thin films has been studied. Magnetization measurements on the single domain film on 2° miscut (001) SrTiO3 substrate showed that the in-plane [110] direction, which is aligned along the miscut direction, is the easier axis for magnetization compared to the [001] direction. This film also showed a strong anisotropie magnetoresistance (AMR) effect of ∼ 8% in magnitude. In contrast, the SrRuO3 thin film on (001) LaAlO3 substrate shows identical magnetization and magnetoresistance behavior in two orthogonal directions on the film due to the presence of 90 domains in the plane. For both the films, large negative magnetoresistance effects (-10%) were observed when the current and the applied magnetic field are parallel. The magnetoresistance behavior is explained in terms of suppression of spin fluctuations near Tc and the AMR effect.


1999 ◽  
Vol 602 ◽  
Author(s):  
Y. Suzuki ◽  
Yan Wu ◽  
U. Rüdiger ◽  
J. Yu ◽  
A.D. Kent ◽  
...  

AbstractLattice distortions, be they in the form of chemical and hydrostatic pressure in bulk or lattice mismatch between film and substrate, have significant effects on the transport as well as the magnetic properties of colossal magnetoresistance (CMR) materials. We summarize here our results on tensilely and compressively strained La0.7Sr0.3MnO3 (LSMO) thin films that indicate the important role of lattice distortions due to the lattice mismatch between the film and substrate. The strain due to lattice distortions can be used to tune the magnetic domain structure, magnetization, magnetic anisotropy and magnetotransport of LSMO thin films.


Author(s):  
Pan Zheng ◽  
Mohammad Kilani ◽  
Yousef S. Haik ◽  
Ching-Jen Chen

The paper measures the magnetic properties of NdFeB thin films developed under the effects of magnetic field. The samples exhibited a larger residual inductance, saturation magnetization and energy product than those treated without field or with weaker field. Magnetic MEMS was introduced with application of the NdFeB film to micro device such as pumps and gear transmission system.


2013 ◽  
Vol 1557 ◽  
Author(s):  
Lanping Yue ◽  
I. A. Al-Omari ◽  
Wenyong Zhang ◽  
Ralph Skomski ◽  
D. J. Sellmyer

ABSTRACTThe effect of Hf on the permanent magnetism of nanocrystalline Zr18-xHfxCo82 ribbons (x = 0, 2, 4, and 6) was investigated by magnetic properties measurement and magnetic force microscopy (MFM). Emphasis is on the local magnetic domain structures in polycrystalline rapidly solidified Zr18-xHfxCo82 ribbons for four different samples with small fractions of Hf dopants (x ≤ 6). The investigation of the magnetic properties of the Zr18-xHfxCo82 ribbons revealed that all the samples under investigation are ferromagnetic at room temperature, and the corresponding MFM images show bright and dark contrast patterns with up-down magnetic domain structures. It is found that the saturation magnetization and the coercivity depend on Hf doping concentration x in the samples. For a sample with Hf concentration x = 4, the maximum energy product (BH)max value is 3.7 MGOe. The short magnetic correlation length of 131 nm and smallest root-mean-square phase shift value of 0.680 were observed for x = 4, which suggests the refinement of the magnetic domain structure due to weak intergranular exchange coupling in this sample. The above results indicate that suitable Hf addition is helpful for the magnetic domain structure refinement, the coecivity enhancement, and the energy-product improvement of this class of rare-earth-free nanocrystalline permanent-magnet materials.


Author(s):  
S. Tsukahara

Transmission electron microscopy, TEM, that can serve for observation of both atomic and magnetic structures is useful to investigate structure sensitive magnetic properties. It is most effective when it is applied to thin films for which direct interpretation of the results is possible without considering additional effects through specimen handling for TEM use and modification of dimension dependent magnetic properties.Transmission Lorentz microscopy, TLM, to observe magnetic domains has been known for a quarter century. Among TLM modes the defocused mode has been most popular due to its simple way of operation. Recent development of TEM made it possible that an average instrument commercially available could be easily operated at any TLM modes to produce high quality images. This paper mainly utilizes the Foucault mode to investigate domain walls and magnetization ripples as the finest details of domain structure.


2018 ◽  
Vol 07 (03) ◽  
Author(s):  
Camelia Das ◽  
Jumal Das ◽  
Thiruvengadam Vijayabaskaran ◽  
Subhankar Bedanta ◽  
Abhishek Talapatra ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (34) ◽  
pp. 2379-2385 ◽  
Author(s):  
Lanping Yue ◽  
Yunlong Jin ◽  
David J. Sellmyer

ABSTRACTThe boron-content dependence of magnetic domain structures and magnetic properties of nanocrystalline Zr16Co82.5−xMo1.5Bx (x = 0, 1, 2, 3, 4) melt-spun ribbons have been investigated. Compared to x = 0, the smaller average domain size with a relatively short magnetic correlation length of 120 nm and largest root-mean-square phase shift value of 0.94° are observed for x = 1. The best magnetic properties of coercivity Hc = 5.4 kOe, maximum energy product (BH)max = 4.1 MGOe, and saturation polarization Js = 7.8 kG, were obtained for the ribbon with x = 1. The optimal B addition enhances the content of hard magnetic phase, promotes magnetic domain structure refinement, and increases the surface roughness, results in the enhancement of magnetic anisotropy, and thus leads to a significant increase in coercivity and energy product in this sample.


Sign in / Sign up

Export Citation Format

Share Document