Transport Mechanisms in Focused Ion Beam Assisted Ohmic Contacts to p-Type 6H-SiC

2002 ◽  
Vol 742 ◽  
Author(s):  
Agis A. Iliadis

ABSTRACTThe current transport mechanism in non-annealed Ohmic contact metallizations on p-type 6H-SiC formed by using focused ion beam (FIB) surface-modification and direct-write metal deposition is reported, and the properties of such focused ion beam assisted non-annealed contacts are discussed. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10-4 Ω cm2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10-5 Ω cm2 range for surface-modified and pulse laser deposited TiN contacts. The current transport mechanism of these contacts was examined and found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer.

Nanoscale ◽  
2013 ◽  
Vol 5 (23) ◽  
pp. 11699 ◽  
Author(s):  
Suman Nandy ◽  
Gonçalo Gonçalves ◽  
Joana Vaz Pinto ◽  
Tito Busani ◽  
Vitor Figueiredo ◽  
...  

1999 ◽  
Vol 28 (3) ◽  
pp. 136-140 ◽  
Author(s):  
A. A. Iliadis ◽  
S. N. Andronescu ◽  
W. Yang ◽  
R. D. Vispute ◽  
A. Stanishevsky ◽  
...  

2019 ◽  
Vol 40 (1) ◽  
pp. 012805 ◽  
Author(s):  
Jianjun Shi ◽  
Xiaochuan Xia ◽  
Qasim Abbas ◽  
Jun Liu ◽  
Heqiu Zhang ◽  
...  

2018 ◽  
Vol 924 ◽  
pp. 381-384 ◽  
Author(s):  
Robert S. Okojie ◽  
Dorothy Lukco

We report the initial results of using co-sputtered Pt:Ti 80:20 at. % composition ratio metallization as a diffusion barrier against gold (Au) and oxygen (O), as an interconnect layer, as well as forming simultaneous ohmic contacts to n-and p-type 4H-SiC. Having a single conductor with such combined multi-functional attributes would appreciably reduce the fabrication costs, processing time and complexity that are inherent in the production of SiC based devices. Auger Electron Spectroscopy, Focused Ion Beam-assisted Field Emission Scanning Electron Microscopy and Energy Dispersive Spectroscopy analyses revealed no Au and O migration to the SiC contact surface and minimal diffusion through the Pt:Ti barrier layer after 15 minutes of exposure at 800 oC in atmosphere, thus offering potential long term stability of the ohmic contacts. Specific contact resistance values of 7 x 10-5 and 7.4 x 10-4 Ω-cm2 were obtained on the n (Nd=7 x 1018 cm-3) and p (Na=2 x 1020 cm-3) -type 4H-SiC, respectively. The resistivity of 75 μΩ-cm was obtained for the Pt:Ti layer that was sandwiched between two SiO2 layers and annealed in pure O ambient up to 900 °C, which offers promise as a high temperature interconnect metallization.


2019 ◽  
Vol 64 (1) ◽  
pp. 56
Author(s):  
P. O. Sai ◽  
N. V. Safryuk-Romanenko ◽  
D. B. But ◽  
G. Cywiński ◽  
N. S. Boltovets ◽  
...  

We report about a study of the formation and current transport mechanism of ohmic contacts to n+-InN with electron concentrations of 2×1018, 8×1018, and 4×1019 cm−3. Pd/Ti/Au ohmic contacts are formed by the proposed approach of simultaneous magnetron metal deposition and in-situ temperature annealing, which allows obtaining a low contact resistivity (4.20±2.67)×10−6 Ohm· cm2. The additional rapid thermal annealing in the temperature interval 350–400 ∘C is used to improve further contact characteristics. Optimal parameters of the temperature treatment are determined by statistic methods. As for the current transport mechanism, the unusual growing temperature behavior of contact resistivity is observed in the wide temperature range 4.2–380K for each doping level of InN films. The mechanism of thermionic current flow explains the current transport through metal shunts, which is associated with the conducting dislocations. The extracted density of conducting metal shunts has a good agreement with experimental values of the screw and edge dislocation densities experimentally obtained by high-resolution X-ray diffraction. Additionally, from the obtained contact resistivity temperature dependences, we can argue about the metal, which penetrates dislocations and forms shunts.


2013 ◽  
Vol 802 ◽  
pp. 199-203 ◽  
Author(s):  
Nathaporn Promros ◽  
Suguru Funasaki ◽  
Ryūhei Iwasaki ◽  
Tsuyoshi Yoshitake

n-Type nanocrystalline FeSi2/intrinsic Si/p-type Si heterojunctions were successfully fabricated by FTDCS and their forward current-voltage characteristics at low temperatures were analyzed on the basis of thermionic emission theory. The analysis of J-V characteristics exhibits an increase in the ideality factor and a decrease in the barrier height at low temperatures. The values of ideality factor were estimated to be 2.26 at 300 K and 9.29 at 77 K. The temperature dependent ideality factortogether with the constant value of parameter A indicated that a trap assisted multi-step tunneling process is the dominant carrier transport mechanism in this heterojunction. At high voltages, the current transport mechanism is dominated by SCLC process.


Author(s):  
Po Fu Chou ◽  
Li Ming Lu

Abstract Dopant profile inspection is one of the focused ion beam (FIB) physical analysis applications. This paper presents a technique for characterizing P-V dopant regions in silicon by using a FIB methodology. This technique builds on published work for backside FIB navigation, in which n-well contrast is observed. The paper demonstrates that the technique can distinguish both n- and p-type dopant regions. The capability for imaging real sample dopant regions on current fabricated devices is also demonstrated. SEM DC and FIB DC are complementary methodologies for the inspection of dopants. The advantage of the SEM DC method is high resolution and the advantage of FIB DC methodology is high contrast, especially evident in a deep N-well region.


Sign in / Sign up

Export Citation Format

Share Document