Modeling the crystal growth of cubic silicon carbide by molecular dynamics simulations

2002 ◽  
Vol 742 ◽  
Author(s):  
Nicoletta Resta ◽  
Christopher Kohler ◽  
Hans-Rainer Trebin

ABSTRACTThe crystal growth of a seed of cubic SiC into the amorphous material has been investigated by means of classical molecular dynamics simulations. The crystallization process was studied with a set of supercells containing up to 2000 atoms, initially consisting of a 12 Å thick layer of crystalline SiC and a 18 Å thick layer of amorphous SiC at high pressure. The dynamic evolution of crystallization was then followed for several nanoseconds with the simulated annealing technique performed at constant pressure and temperature. The atomic interactions were described by the Tersoff potential. We studied the dependence of the growth process on the crystallographic orientation of the crystalline/amorphous interface by considering three different crystal planes, namely the {100}, {110}, and {111} planes. Within the pressure-temperature range considered in our simulations, we observed the crystal growth only for the {110} and the {111} orientations, but not for the {100} ones. The atomistic details of the growth mechanism are described and discussed.

2019 ◽  
Vol 3 (8) ◽  
pp. 207-213
Author(s):  
Teruaki Motooka ◽  
Shinji Munetoh ◽  
Ryuzo Kishikawa ◽  
Takahide Kuranaga ◽  
Tomohiko Ogata ◽  
...  

2005 ◽  
Vol 1 (4) ◽  
pp. 204-209
Author(s):  
O.B. Malcıoğlu ◽  
Ş. Erkoç

The minimum energy structures of CmTin microclusters and nanoparticles have been investigated theoretically by performing molecular–dynamics (MD) simulations. Selected crystalline and completely random initial geometries are considered. The potential energy function (PEF) used in the calculations includes two– and three–body atomic interactions for C-Ti binary systems. Molecular–dynamics simulations have been performed at 1 K and 300 K. It has been found that initial geometry has a very strong influence on relaxed geometry


2000 ◽  
Vol 644 ◽  
Author(s):  
Xi-Yong Fu ◽  
Michael L. Falk ◽  
David A. Rigney

AbstractTribological properties of bulk metallic glass Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 were studied experimentally using a pin/disk geometry without lubrication. Experimental observations were compared with 2D molecular dynamics simulations of amorphous material in sliding contact. The friction coefficient and the wear rate of bulk metallic glass (BMG) depend on normal load and test environment. The sliding of annealed BMG re-amorphizes devitrified material. A mechanically mixed layer is generated during sliding; this layer has enhanced oxygen content if the sliding is in air. The MD simulations show that atomic scale mixing occurs across the sliding interface. The growth kinetics of the mixing process scales with the square root of time. In the simulations, a low density region is generated near the sliding interface; it corresponds spatially to the softer layer detected in experiments. Subsurface displacement profiles produced by sliding and by simulation are very similar and are consistent with the flow patterns expected from a simple Navier-Stokes analysis when the stress state involves both compression and shear.


2001 ◽  
Vol 681 ◽  
Author(s):  
Kurt Scheerschmidt

ABSTRACTMolecular dynamics simulations using empirical potentials have been employed to describe atomic interactions at interfaces created by the macroscopic wafer bonding process. Investigating perfect or distorted surfaces of different semiconductor materials as well as of silica enables one to study the elementary processes and the resulting defects at the interfaces, and to characterize the ability of the potentials used. Twist rotation due to misalignment and bonding over steps influence strongly the bondability of larger areas. Empirical potentials developed by the bond order tight-binding approximation include ∏-bonds and yield enhanced interface structures, energies, and transferability to new materials systems.


Author(s):  
Sean M. Ryno ◽  
Ramin Noruzi ◽  
Chamikara Karunasena ◽  
Balaji Sesha Sarath Pokuri ◽  
Shi Li ◽  
...  

While organic semiconductors (OSC) offer distinctive features for several electronic and optical technologies, questions remain as to how the chemistries of the molecular building blocks impact material nucleation and growth...


Sign in / Sign up

Export Citation Format

Share Document