initial geometry
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 33)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Aleksi Kurkela ◽  
Aleksas Mazeliauskas ◽  
Robin Törnkvist

Abstract Motivated by recent interest in collectivity in small systems, we calculate the harmonic flow response to initial geometry deformations within weakly coupled QCD kinetic theory using the first correction to the free-streaming background. We derive a parametric scaling formula that relates harmonic flow in systems of different sizes and different generic initial gluon distributions. We comment on similarities and differences between the full QCD effective kinetic theory and the toy models used previously. Finally we calculate the centrality dependence of the integrated elliptic flow v2 in oxygen-oxygen, proton-lead and proton-proton collision systems.


2021 ◽  
Author(s):  
Adam Jasudavisius

The objective of this study was to perform a 3D aerodynamic shape optimization on a ducted fan propulsion system configured for cruise flight on an aircraft. The initial shapes of the duct and hub were determined using a basic grid searching optimization approach. An efficient optimization algorithm was created that utilized the BFGS searching technique with a QuasiNewton line search to refine the initial geometry. The ducted fan was chosen to be controlled by 13 control points connected using a combination of splines, ellipses and conics. The optimum design resulted in a 33.54% and 36.45% reduction in drag for the duct and hub respectively. The propeller thrust was also increased by 141.49%. The optimization methodology used throughout this study proved to be an efficient technique in finding the optimal design to within a high degree of resolution based on the entire design space considered.


2021 ◽  
Author(s):  
Adam Jasudavisius

The objective of this study was to perform a 3D aerodynamic shape optimization on a ducted fan propulsion system configured for cruise flight on an aircraft. The initial shapes of the duct and hub were determined using a basic grid searching optimization approach. An efficient optimization algorithm was created that utilized the BFGS searching technique with a QuasiNewton line search to refine the initial geometry. The ducted fan was chosen to be controlled by 13 control points connected using a combination of splines, ellipses and conics. The optimum design resulted in a 33.54% and 36.45% reduction in drag for the duct and hub respectively. The propeller thrust was also increased by 141.49%. The optimization methodology used throughout this study proved to be an efficient technique in finding the optimal design to within a high degree of resolution based on the entire design space considered.


2021 ◽  
Vol 10 (6) ◽  
pp. 360
Author(s):  
Claudio Alimonti ◽  
Valerio Baiocchi ◽  
Giorgia Bonanotte ◽  
Gábor Molnár

The aqueducts built by the ancient Romans are among the most impressive evidence of their engineering skills. The water inside the aqueducts was transported for kilometers, exploiting only the slight but constant differences in altitude throughout the route. To keep the differences in height constant, the aqueducts could proceed underground or aboveground on well-known arched structures that supported lead, ceramic or stone pipes. In order to reconstruct the characteristics of these structures, it is necessary to carry out an accurate survey of the orthometric heights, and therefore the most suitable technology is geometric levelling. In this case, however, it is not applicable, and therefore here we propose an alternative methodology. The final goal of this work was to estimate the flow of some sectors of these aqueducts preserved in the area south of the city of Rome. This has two main purposes: The first is to reconstruct the flow rate of these aqueducts for historical studies; the second is to check how much the orthometric heights have changed over the centuries, in order to reconstruct the movements from a geophysical and geodynamic point of view. The latter analysis will be developed in a following phase of this research. For this purpose, a high-precision geomatic survey was carried out in the area under study, partly retracing a survey already carried out in 1917 whose purpose and methodologies are not known. The area has been affected by a gradual subsidence over centuries, including since 1917. The observed sections of the aqueducts showed average inclinations, slightly lower than the 2 per thousand that is reported in the literature for similar aqueducts. The measurements carried out allowed the flow rate of the two specific aqueducts to be estimated more accurately, both as they were originally and in the presence of deposits that have accumulated during the years of use of the aqueducts. The reconstruction of the initial geometry will later be used as a reference to estimate how much the geodynamic deformations of the area have deformed the aqueducts themselves.


2021 ◽  
Vol 11 (9) ◽  
pp. 4277
Author(s):  
Pablo Sanz de Ojeda ◽  
Eugenio Sanz Pérez ◽  
Rubén Galindo ◽  
Cesar Sanz Riaguas

Through a study of glacial geomorphology and retrospective modeling of the stability of the slopes, it has been possible to reconstruct and know the mechanism of the formation of a large landslide induced by the retreat of the glacier corresponding to the Picos de Urbión (Coordillera Ibérica, Spain) during the last glacial cycle. It is a rotational landslide of 150 Mm3 that involved a layer of lutites and clays of the Cameros Basin that outcropped on one of the slopes of the valley, and whose initial geometry was modified by the over-excavation of the glacier tongue, which reached 140 m in height. The breakage occurred when the support of the ice tongue was partially removed. The structural layout and high water table also contributed to the landslide. It is the first time that landslides associated with the deglaciations of the last glacial cycle have been retrospectively modeled, which may be of interest when applied to geomorphological sciences.


2021 ◽  
Vol 18 (178) ◽  
pp. 20210058
Author(s):  
S. Rossoni ◽  
S. T. Fabian ◽  
G. P. Sutton ◽  
P. T. Gonzalez-Bellido

Insects that predate aerially usually contrast prey against the sky and attack upwards. However, killer flies ( Coenosia attenuata ) can attack prey flying below them, performing what we term ‘aerial dives'. During these dives, killer flies accelerate up to 36 m s −2 . Although the trajectories of the killer fly's dives appear highly variable, proportional navigation explains them, as long as the model has the lateral acceleration limit of a real killer fly. The trajectory's steepness is explained by the initial geometry of engagement; steep attacks result from the killer fly taking off when the target is approaching the predator. Under such circumstances, the killer fly dives almost vertically towards the target, and gravity significantly increases its acceleration. Although killer flies usually time their take-off to minimize flight duration, during aerial dives killer flies cannot reach the lateral accelerations necessary to match the increase in speed caused by gravity. Since a close miss still leads the predator closer to the target, and might even slow the prey down, there may not be a selective pressure for killer flies to account for gravity during aerial dives.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Hendrik Roch ◽  
Nicolas Borghini

AbstractWe investigate the fluctuations of anisotropic transverse flow due to the finite number of scatterings in a two-dimensional system of massless particles. Using a set of initial geometries from a Monte Carlo Glauber model, we study how flow coefficients fluctuate about their mean value at the corresponding eccentricity, for several values of the scattering cross section. We also show how the distributions of the second and third event planes of anisotropic flow about the corresponding participant plane in the initial geometry evolve as a function of the mean number of scatterings in the system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Wang ◽  
Julien Lefèvre ◽  
Amine Bohi ◽  
Mariam Al Harrach ◽  
Mickael Dinomais ◽  
...  

AbstractAbnormal cortical folding patterns, such as lissencephaly, pachygyria and polymicrogyria malformations, may be related to neurodevelopmental disorders. In this context, computational modeling is a powerful tool to provide a better understanding of the early brain folding process. Recent studies based on biomechanical modeling have shown that mechanical forces play a crucial role in the formation of cortical convolutions. However, the effect of biophysical parameters in these models remain unclear. In this paper, we investigate the effect of the cortical growth, the initial geometry and the initial cortical thickness on folding patterns. In addition, we not only use several descriptors of the folds such as the dimensionless mean curvature, the surface-based three-dimensional gyrification index and the sulcal depth, but also propose a new metric to quantify the folds orientation. The results demonstrate that the cortical growth mode does almost not affect the complexity degree of surface morphology; the variation in the initial geometry changes the folds orientation and depth, and in particular, the slenderer the shape is, the more folds along its longest axis could be seen and the deeper the sulci become. Moreover, the thinner the initial cortical thickness is, the higher the spatial frequency of the folds is, but the shallower the sulci become, which is in agreement with the previously reported effects of cortical thickness.


2021 ◽  
Author(s):  
Yannick Carette ◽  
Joost R. Duflou

Harmonic decomposition is an analytical technique that is able to express a manifold surface as the sum of a number of simple surface harmonic components. By reconstructing the initial geometry using a reduced number of components, a similar surface is obtained with a lower level of geometric detail. Because small features are filtered out and the resulting surface lies equal parts above and below the original surface, a tailored multi-step SPIF (Single Point Incremental Forming) processing strategy can be devised. This sequential SPIF strategy uses three processing passes to form a workpiece. The first step is a regular SPIF operation using a conventional toolpath strategy to form the reduced geometry. Two finishing steps are then needed, one from the same side to form the smaller features that lies deeper than the reduced geometry and one backwards pass from the other side of the sheet. To add features that need to be shallower than the reduced geometry, the part is flipped around. The used sequence of these finishing steps and the toolpath strategy used significantly influence the final part accuracy and surface quality. The advantages and disadvantages of four of these combined strategies are examined and compared to regular SPIF.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 574
Author(s):  
Stanislav Šulc ◽  
Vít Šmilauer ◽  
František Wald

Fire exposure of timber leads to charring, surface cracking and timber burnout, shifting the external thermal load deeper into the timber domain. This phenomenon plays its role mainly in situations of longer fire exposure. The majority of current approaches and models assume initial geometry during the whole analysis, leading generally to the overestimation of the insulation effect of the charred layer and to a limited burnout. This paper presents a heat transport model which is supplemented with a moving boundary condition, a criterion for the finite element deactivation and the internal heat source. Comparison with experiments using a constant radiative load testifies that the moving boundary condition becomes important after approximately 10 min of fire exposure and rather leads to a constant charring rate observed in several experiments.


Sign in / Sign up

Export Citation Format

Share Document