Ni Silicide Formation on Polycrystalline SiGe and SiGeC Layers

2002 ◽  
Vol 745 ◽  
Author(s):  
Erik Haralson ◽  
Tobias Jarmar ◽  
Johan Seger ◽  
Henry H. Radamson ◽  
Shi-Li Zhang ◽  
...  

ABSTRACTThe reactions of Ni with polycrystalline Si, Si0.82Ge0.18 and Si0.818Ge0.18C0.002 films in two different configurations during rapid thermal processing were studied. For the usually studied planar configuration with 20 nm thick Ni on 130–290 nm thick Si1-x-yGexCy, NiSi1-xGex(C) forms at 450°C on either Si0.82Ge0.18 or Si0.818Ge0.18C0.002, comparable to NiSi formed on Si. However, the agglomeration of NiSi1-xGex(C) on Si0.818Ge0.18C0.002 occurs at 625°C, about 50°C higher than that of NiSi1-xGex on Si0.82Ge0.18. For thin-film lateral diffusion couples, a 200-nm thick Ni film was in contact with 80–130 nm thick Si1-x-yGexCy through 1–10 μm sized contact openings in a 170 nm thick SiO2 isolation. While the Ni3Si phase was formed for both the Si0.82Ge0.18 and Si0.818Ge0.18C0.002 samples, the presence of 0.2 at.% C caused a slightly slower lateral growth.

1986 ◽  
Vol 74 ◽  
Author(s):  
T. E. Haynes ◽  
S. T. Picraux ◽  
W. K. Chu

AbstractA technique is described for direct measurement of evaporation of Ga and As from capped GaAs during RTP. Application of this method to the study of Si, SiO2, and Si3N4 caps with thicknesses of 20 nm to 60 nm provides a direct measure of the temperature ranges for which the caps are able to prevent evaporation during RTP. In addition, kinetic studies of the evaporation at slightly higher temperatures provides information useful for establishing the predominant evaporation mechanism. For the encapsulants studied, these measurements indicate that the observed evaporation is due to formation of cracks in the film during the initial 10 sec of RTP.


1987 ◽  
Vol 108 ◽  
Author(s):  
Joyce. C. Liu ◽  
J. W. Mayer

ABSTRACTPhase formation of NiAl3 and Ni2Al3 were studied individually in lateral diffusion couples A and B and simultaneously in sample C. The lateral growth of certain phases was controlled by varying the thickness ratios of Al to Ni at the source and thin film area. Parabolic dependence of the phase width on annealing time was found for NiAl3 and Ni2Al3 in the one-phase and two-phase growth at 425 °C.


1983 ◽  
Vol 1 (2) ◽  
pp. 758-761 ◽  
Author(s):  
L. R. Zheng ◽  
L. S. Hung ◽  
J. W. Mayer

2012 ◽  
Vol 15 (4) ◽  
pp. 269-275 ◽  
Author(s):  
Marcus Hopfeld ◽  
Rolf Grieseler ◽  
Thomas Kups ◽  
Marcus Wilke ◽  
Peter Schaaf

2006 ◽  
Vol 129 (3) ◽  
pp. 323-326
Author(s):  
Sachin S. Kulkarni ◽  
Jyoti S. Shirolikar ◽  
Neelkanth G. Dhere

Rapid thermal processing (RTP) provides a way to rapidly heat substrates to an elevated temperature to perform relatively short duration processes, typically less than 2–3min long. RTP can be utilized to minimize the process cycle time without compromising process uniformity, thus eliminating a bottleneck in CuIn1−xGaxSe2−ySy (CIGSS) module fabrication. Some approaches have been able to realize solar cells with conversion efficiencies close or equal to those for conventionally processed solar cells with similar device structures. A RTP reactor for preparation of CIGSS thin films on 10cm×10cm substrates has been designed, assembled, and tested at the Florida Solar Energy Center’s PV Materials Lab. This paper describes the synthesis and characterization of CIGSS thin-film solar cells by the RTP technique. Materials characterization of these films was done by scanning electron microscopy, x-ray energy dispersive spectroscopy, x-ray diffraction, Auger electron spectroscopy, electron probe microanalysis, and electrical characterization was done by current–voltage measurements on soda lime glass substrates by the RTP technique. Encouraging results were obtained during the first few experimental sets, demonstrating that reasonable solar cell efficiencies (up to 9%) can be achieved with relatively shorter cycle times, lower thermal budgets, and without using toxic gases.


1993 ◽  
Vol 63 (1-4) ◽  
pp. 131-134 ◽  
Author(s):  
J.-M. Dilhac ◽  
C. Ganibal ◽  
N. Nolhier ◽  
P.B. Moynagh ◽  
C.P. Chew ◽  
...  

1995 ◽  
Vol 7 (12) ◽  
pp. 2247-2251 ◽  
Author(s):  
L. Torsi ◽  
A. Dodabalapur ◽  
A. J. Lovinger ◽  
H. E. Katz ◽  
R. Ruel ◽  
...  

1995 ◽  
Vol 402 ◽  
Author(s):  
M. Döscher ◽  
B. Selle ◽  
M. Pauli ◽  
F. Kothe ◽  
J. Szymanski ◽  
...  

AbstractAmorphous irondisilicide thin films were deposited on silicon substrates in a RF sputtering process, followed by rapid thermal crystallization by means of moving the thin film beneath a line-shaped electron beam to form β-FeSi2. Depending on the deposition process parameters, films of a different stoichiometry can be produced. The deviations from the 1:2 stoichiometry, which have been determined by Rutherford Backscattering (RBS), are related to changes in the microstructure (studied by microscopic methods like TEM and AFM), the infrared phonon spectra (measured by FTIR spectroscopy) and the electrical properties of the crystallized films. The microstructure of the iron disilicide thin films is improved when the composition significantly deviates from 2.0, probably due to silicon interstitials in the silicide thin film. Films of different stoichiometry result in p- or n-type thin films with carrier densities below 5×1018cm−3 and hall mobilities up to 180cm 2/Vs. First results show that not only β-FeSi2-siliconheterojunctions as reported before but also pn-β-FeSi2-homojunctions show rectifying behavior. Rapid thermal processing with the line electron beam leads to a further improvement of the film quality when the scan velocity is increased up to the order of several cm/s.


1993 ◽  
Vol 303 ◽  
Author(s):  
Peter Y. Wong ◽  
Christopher K. Hess ◽  
Ioannis N. Miaoulis

ABSTRACTThe individual film thicknesses of multilayered structures processed by rapid thermal processing are of the same order as the wavelengths of the incident radiation. This induces optical interference effects which are responsible for the strong dependency of surface reflectivity, emissivity, and temperature distributions on the geometry of the layering structures, presence of patterns, and thickness of the films. A two-dimensional, finitedifference numerical model has been developed to investigate this microscale radiation phenomena and identify the critical processing parameters which affect rapid thermal processing of multilayer thin films. The uniformity of temperature distributions throughout the wafer during rapid thermal processing is directly affected by incident heater configurations, ramping conditions, wafer-edge effects, and thin-film layering structure. Results from the numerical model for various film structures are presented for chemical vapor deposition of polycrystalline silicon over oxide films on substrate. A novel technique using an edge-enhanced wafer which has a different film structure near its edge is presented as a control over the transient temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document