Cell Density Dependent Reduction Kinetics of Hexavalent Uranium byShewanella oneidensis

2002 ◽  
Vol 757 ◽  
Author(s):  
Lisa Mullen ◽  
Vanja Klepac ◽  
Chanathip Pharino ◽  
Ken Czerwinski ◽  
Martin Polz

ABSTRACTShewanella oneidensisis a widely distributed species of bacteria and is known to utilize several elements such as iron, manganese and sulfur as electron acceptors. In an anoxic environment lacking more electrochemically favourable electron acceptorsS. oneidensisis shown to reduce uranium, changing its oxidation state from hexavalent to tetravalent, by the following reaction: H2+ UO22+→ 2H++ UO2. The uranyl solution concentration (U(VI)) was measured using inductively coupled plasma atomic emission spectroscopy (ICP-AES), and the reduction data were fit to first order. Several cell concentrations were examined and both the rate of uranyl reduction and the total amount of uranyl reduced are found to be dependent upon cell density. The largest rate constant was 0.7 hr-1corresponding to a cell density of 2.4*109cells/mL and an initial reduction rate of 1414 μM/hr. A cell concentration of 6.6*108cells/mL gave rise to an initial reduction rate of 400μM U(VI) per hour, and had, within a period of 72 hours approximately 98% of the original 2 mM uranyl acetate reduced, as opposed to only 87% for 2.4*109cells/mL.

2006 ◽  
Vol 309-311 ◽  
pp. 457-460 ◽  
Author(s):  
Noriko Miura ◽  
Hirotaka Maeda ◽  
Toshihiro Kasuga

Silica-doped poly(lactic acid) (PLA) composite hollow spheres containing calcium carbonates (Si-CCPC spheres) were prepared using aminopropyltriethoxysilane (APTES) for injectable bone fillers combined with a cell-delivery system. Si-CCPC spheres have a hollow spherical shape of ~1 mm in the external diameter and an open channel in the shell, which is selfformed. The channel size is about 500 *m in diameter. X-ray energy dispersive spectroscopy (EDS) analysis showed incorporation of silicon in Si-CCPC spheres. After soaking Si-CCPC spheres in simulated body fluid (SBF), hydroxycarbonate apatite formed on the Si-CCPC spheres. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) showed that the Si4+ ion is released from Si-CCPC spheres in SBF.


1979 ◽  
Vol 33 (6) ◽  
pp. 592-599 ◽  
Author(s):  
G. F. Larson ◽  
V. A. Fassel

Spectral line broadening and radiative electron-ion recombination processes may make significant contributions to the total spectral background level when inductively coupled plasma excitation sources are observed with spectrometers having low stray light levels. These background contributions are more easily identified in inductively coupled plasma discharges because of their stable background level and by the fact that net analyte line intensities are affected to such a small degree by changes in the concentration of concomitants. The wings of collisionally broadened lines may produce significant background changes at wavelengths removed 10 nm from the parent line center. For some elements such as Mg, linear Stark-broadened lines produced spectral background at unexpectedly large displacements from the line center. The radiative Al ion-electron recombination continuum produces a greater than tenfold increase in the background from ∼210 down to 193 nm at Al solution concentration of 2500 μg/ml. Thus, a solution containing only 250 μg/ml of Al will cause an ∼100% increase in the background level below 210 nm over that measured when deionized water is nebulized into the plasma.


2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


2018 ◽  
Author(s):  
Danila Barskiy ◽  
Lucia Ke ◽  
Xingyang Li ◽  
Vincent Stevenson ◽  
Nevin Widarman ◽  
...  

<p>Hyperpolarization techniques based on the use of parahydrogen provide orders of magnitude signal enhancement for magnetic resonance spectroscopy and imaging. The main drawback limiting widespread applicability of parahydrogen-based techniques in biomedicine is the presence of organometallic compounds (the polarization transfer catalysts) in solution with hyperpolarized contrast agents. These catalysts are typically complexes of platinum-group metals and their administration in vivo should be avoided.</p> <p><br></p><p>Herein, we show how extraction of a hyperpolarized compound from an organic phase to an aqueous phase combined with a rapid (less than 10 seconds) Ir-based catalyst capture by metal scavenging agents can produce pure parahydrogen-based hyperpolarized contrast agents as demonstrated by high-resolution nuclear magnetic resonance (NMR) spectroscopy and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The presented methodology enables fast and efficient means of producing pure hyperpolarized aqueous solutions for biomedical and other uses.</p>


2020 ◽  
Vol 86 (5) ◽  
pp. 16-21
Author(s):  
T. A. Karimova ◽  
G. L. Buchbinder ◽  
S. V. Kachin

Calibration by the concentration ratio provides better metrological characteristics compared to other calibration modes when using the inductively coupled plasma atomic emission spectrometry (ICP-AES) for analysis of geological samples and technical materials on their base. The main reasons for the observed improvement are: i) elimination of the calibration error of measuring vessels and the error of weighing samples of the analyzed materials from the total error of the analysis; ii) high intensity of the lines of base element; and iii) higher accuracy of measuring the ratio of intensities compared to that of measuring the absolute intensities. Calcium oxide is better suited as a base when using calibration by the concentration ratio in analysis of carbonate rocks, technical materials, slags containing less than 20% SiO2 and more than 20% CaO. An equation is derived to calculate the content of components determined in carbonate materials when using calibration by the concentration ratio. A method of ICP-AES with calibration by the concentration ratio is developed for determination of CaO (in the range of contents 20 – 100%), SiO2 (2.0 – 35%), Al2O3 (0.1 – 30%), MgO (0.1 – 20%), Fe2O3 (0.5 – 40%), Na2O (0.1 – 15%), K2O (0.1 – 5%), P2O5 (0.001 – 2%), MnO (0.01 – 2%), TiO2 (0.01 – 2.0%) in various carbonate materials. Acid decomposition of the samples in closed vessels heated in a HotBlock 200 system is proposed. Correctness of the procedure is confirmed in analysis of standard samples of rocks. The developed procedure was used during the interlaboratory analysis of the standard sample of slag SH17 produced by ZAO ISO (Yekaterinburg, Russia).


Sign in / Sign up

Export Citation Format

Share Document