Pixel-to-point Transfer: a Process for Integrating Individual GaN-based Light-emitting Devices in o Heterogeneous Microsystems

2003 ◽  
Vol 768 ◽  
Author(s):  
Z.S. Luo ◽  
T. Sands ◽  
N.W. Cheung ◽  
J.A. Chediak ◽  
J. Seo ◽  
...  

AbstractA novel ultra-low-thermal-budget pixel-to-point transfer process based on the excimer laser lift-off and Pd-In transient-liquid-phase bonding scheme was developed for flexible and precise placement of single pixels of GaN-based light-emitting diodes (LED) on target substrates. The transfer was accomplished by (1) temporarily bonding the light-emitting diode (LED) pixel to a specially designed pick-up rod with sapphire substrates facing up using Super Glue., (2) removing the sapphire substrates using laser lift-off, and (3) registering and permanently bonding the LED pixel to the designated area in the target substrates using Pd-In transient-liquid-phase bonding. An oxygen plasma was employed to remove the Super Glue® residue before further microfabrication and system integration was performed. The capability of this technique was demonstrated in the integration of GaN-based LED pixels with pre-fabricated PIN photodiode chips and thin-film bandedge filters, which formed the non-disposable subsystems of a fluorescence-based lab-on-a-chip system. The performance of these integrated LED pixels and the integrated microsystems has been assessed by evaluating the fluorescence intensity as a function of equivalent fluorescein dye concentration using disposable polydimenthyl siloxane(PDMS) microfluidic channels. GaN LEDs with peak emission at 463 nm were used to excite 515nm fluorescence from FluoSpheres® carboxylate-modified fluorescent microspheres (40nm in diamters).

2021 ◽  
Vol 3 (2) ◽  
pp. 778-788
Author(s):  
Nursidik Yulianto ◽  
Grandprix T. M. Kadja ◽  
Steffen Bornemann ◽  
Soniya Gahlawat ◽  
Nurhalis Majid ◽  
...  

Author(s):  
Alireza Zaheri ◽  
Mohammadreza Farahani ◽  
Alireza Sadeghi ◽  
Naser Souri

The bonding strength, and microstructures of Cu and Al couples using metallic powders as interlayer during transient liquid phase bonding (TLP bonding) were investigated. The interfacial morphologies and microstructures were studied by scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. First, to explore the optimum bonding time and temperature, nine samples were bonded without interlayers in a vacuum condition. Mechanical test results indicated that bonding at 560°C in 20 min returns the highest bond strength (84% of Al). This bonding condition was used to join ten samples with powder interlayers. Powders were prepared by mixing different combinations of Cu, Al (+Fe nanoparticles) and Zn. In the bonding zone, different Cu9Al4, CuAl, and CuAl2 intermetallic co-precipitate. The strongest bonding is formed in the sample with the 70Al (+Fe)-30Cu powder interlayer. Powder interlayers present thinner and more uniform intermetallic layers at the joint interface.


Author(s):  
B. Benita ◽  
D.S. Samuvel Prem Kumar ◽  
R. Pravin ◽  
N.Samuel Dinesh Hynes ◽  
J.Angela Jennifa Sujana

Sign in / Sign up

Export Citation Format

Share Document