Application of Scanning Tunneling Microscopy to the Study of Metals: Spectroscopy and Topography

1986 ◽  
Vol 77 ◽  
Author(s):  
R. C. Jaklevic ◽  
W. J. Kaiser

ABSTRACTThe design and performance of a scanning tunneling microscope for use in the study of metal surfaces is described. The system was designed for ultra high vacuum together with standard sample cleaning and characterization techniques. The STM provides both topographic and spectroscopie information. Topographic images of well annealed Au(lll) show very smooth planes with single atomic steps. Corrugation on the (111) planes, which is expected from reconstruction models for this surface, is not seen. Other areas show monatomic steps in the form of an ordered array with a period corresponding to that derived from previous studies. A possible alternative reconstruction mechanism is suggested by these STM data. On the same surface are steeper sloped regions with multiple steps of equal height with wide facets. Spectroscopie first derivative data for Au and Pd show peaks which correspond to surface and bulk electronic states, for both filled and unfilled cases. The energy values of these states are compared directly with the results of other experimental methods. The use of combined topographic and spectroscopie mode for metals is anticipated.

2021 ◽  
Vol 22 (13) ◽  
pp. 6880
Author(s):  
Zilong Wang ◽  
Minlong Tao ◽  
Daxiao Yang ◽  
Zuo Li ◽  
Mingxia Shi ◽  
...  

We report an ultra-high vacuum low-temperature scanning tunneling microscopy (STM) study of the C60 monolayer grown on Cd(0001). Individual C60 molecules adsorbed on Cd(0001) may exhibit a bright or dim contrast in STM images. When deposited at low temperatures close to 100 K, C60 thin films present a curved structure to release strain due to dominant molecule–substrate interactions. Moreover, edge dislocation appears when two different wavy structures encounter each other, which has seldomly been observed in molecular self-assembly. When growth temperature rose, we found two forms of symmetric kagome lattice superstructures, 2 × 2 and 4 × 4, at room temperature (RT) and 310 K, respectively. The results provide new insight into the growth behavior of C60 films.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2393
Author(s):  
Artur Trembułowicz ◽  
Agata Sabik ◽  
Miłosz Grodzicki

The surface of quasi-hexagonal reconstructed Au(100) is used as the template for monolayer pentacene (PEN) self-assembly. The system is characterized by means of scanning tunneling microscopy at room temperature and under an ultra-high vacuum. A new modulated pattern of molecules with long molecular axes (MA) arranged along hex stripes is found. The characteristic features of the hex reconstruction are preserved herein. The assembly with MA across the hex rows leads to an unmodulated structure, where the molecular layer does not recreate the buckled hex phase. The presence of the molecules partly lifts the reconstruction—i.e., the gold hex phase is transformed into a (1×1) phase. The arrangement of PEN on the gold (1×1) structure is the same as that of the surrounding molecular domain on the reconstructed surface. The apparent height difference between phases allows for the distinction of the state of the underlying gold surface.


2020 ◽  
Vol 91 (2) ◽  
pp. 023703 ◽  
Author(s):  
Dillon Wong ◽  
Sangjun Jeon ◽  
Kevin P. Nuckolls ◽  
Myungchul Oh ◽  
Simon C. J. Kingsley ◽  
...  

Vacuum ◽  
1995 ◽  
Vol 46 (3) ◽  
pp. 219-222 ◽  
Author(s):  
IV Lyubinetsky ◽  
PV Mel'nik ◽  
NG Nakhodkin ◽  
AE Anisimov

1998 ◽  
Vol 4 (S2) ◽  
pp. 316-317
Author(s):  
D. N. Leonard ◽  
P.E. Russell

Atomic force microscopy (AFM) was introduced in 1984, and proved to be more versatile than scanning tunneling microscopy (STM) due to the AFM's capabilities to scan non-conductive samples under atmospheric conditions and achieve atomic resolution. Ultra high vacuum (UHV) AFM has been used in surface science applications when control of oxidation and corrosion of a sample's surface are required. Expensive equipment and time consuming sample exchanges are two drawbacks of the UHV AFM system that limit its use. Until recently, no hot/cryo-stage, moderate vacuum, controlled gas environment AFM was commonly available.We have demonstrated that phase transformations are easily observable in metal alloys and polymers with the use of a moderate vacuum AFM that has in-situ heating/cooling capabilities and quick (within minutes) sample exchange times. This talk will describe the results of experiments involving a wide range of samples designed to make use of the full capabilities of a hot/cryo-stage, controlled gas environment AFM.


1992 ◽  
Vol 42-44 ◽  
pp. 1621-1626 ◽  
Author(s):  
R. Gaisch ◽  
J.K. Gimzewski ◽  
B. Reihl ◽  
R.R. Schlittler ◽  
M. Tschudy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document