Effect of Excess Vacancies on Antiphase Domain Growth in Fe3Al

2004 ◽  
Vol 842 ◽  
Author(s):  
Y. Koizumi ◽  
T. Hagiwara ◽  
Y. Minamino ◽  
N. Tsuji

ABSTRACTThe growth of the D03-type antiphase domain (APD) in Fe3Al was investigated focusing on the effect of excess vacancies that were introduced during the quenching process from the disordered state. The variation in the APD size exhibited considerable deviation from the conventional “parabolic growth law” in the early stage of APD growth. This variation was numerically calculated on the assumption that the migration of the APD boundaries was enhanced by non-equilibrium excess vacancies and the vacancy concentration decreased during the isothermal annealing for the APD growth. The calculated variations in the APD size could be successfully fitted to the experimental results in cases with quenching temperatures (Tq) of 873 K or 1073 K, but not when Tq was 1273 K. The APD growth in the latter case was much slower than the expected growth derived from the calculation. This discrepancy was attributed to the rapid decrease in the vacancy concentration due to vacancy clustering since a significant amount of dotted contrasts were observed in TEM image of only the specimen quenched from 1273K.

2021 ◽  
pp. 174751982199306
Author(s):  
Ya Gan ◽  
Ning Bai ◽  
Xitong Li ◽  
Shuiting Gao ◽  
Ruiyong Wang

The interactions between radicicol and four proteins (catalase, trypsin, pepsin, and human serum protein) are investigated by spectroscopic techniques and molecular docking. A static quenching process is confirmed. The binding constant value between radicicol and human serum protein is the largest among the four proteins. Results reveal changes in the micro-environment of the protein by the addition of radicicol. It is found that radicicol shows an inhibitory effect on the activity of proteins (catalase, trypsin, and pepsin). Molecular docking results are consistent with the thermodynamic experimental results. This work provides clues to the elucidation of the mechanisms of the interactions between radicicol and proteins.


1965 ◽  
Vol 5 (02) ◽  
pp. 160-166 ◽  
Author(s):  
A.M. Rowe ◽  
I.H. Silberberg

Abstract A computer program was written to predict the phase behavior generated by the enriched-gas-drive process. This program is based, in part, on a new concept of convergence pressure, which is then used to select vapor-liquid equilibrium ratios (K-factors) for performing a series of flash calculations. The results of these calculations are the equilibrium vapor and liquid phase compositions which define the phase envelopes. The program was used to predict phase envelopes for 11 different hydrocarbon systems on which published experimental data were available. The predicted and experimental results compare favorably. Introduction The reservoir engineer is frequently faced with the problem of predicting what will happen if gas is injected into a reservoir. One aspect of this general problem is predicting the phase changes that will occur when a non-equilibrium gas displaces a reservoir fluid. In particular, a "dry" gas, upon displacing a volatile oil will pick up intermediate components from the oil. On the other hand, a "wet" gas, containing a high concentration of intermediates, will lose some of these components to a relatively low-gravity, non-equilibrium crude. It is this latter process, occurring in the enriched-gas displacement, which is treated in this paper. In the past, these phase changes have been determined experimentally and the results incorporated into various modifications of the Buckley-Leverett analysis. Such experimental work is time consuming, and the results are sensitive to numerous experimental errors. With the wide availability of high-speed digital computing equipment and numerous correlations pertaining to the vapor-liquid equilibria of hydrocarbon systems, it is now practical to calculate such phase behavior. This paper describes a computer program for performing these calculations. THE ENRICHED GAS DISPLACEMENT PROCESS Experimental results have shown that oil recovery can be significantly increased by enriching the displacing gas with intermediate hydrocarbon components. The essential features of the phase behavior generated by this enriched-gas-drive process are commonly illustrated with ternary diagrams such as Fig. 1. In this figure, Gas D, which contains a high concentration of intermediate hydrocarbons with respect to the undersaturated Crude A, is injected into the reservoir. When D contacts A, gas goes into solution until the oil becomes saturated (Point. B). Further contacting of Gas D and saturated Oil B results in a Mixture C which separates into Vapor Y(c) and Liquid X(c). Liquid X(c) is contacted by additional Gas D, resulting in Mixture E which separates into Vapor Y(e) and Liquid X(e). Repeated contacts of the liquid by the injected gas will eventually result in Liquid X(d) of maximum enrichment existing in equilibrium with Gas Y(d). The equilibrium tie-line X(d) Y(d), when extended, passes through the Point D representing the enriched injection gas. For systems of more than three components, the predicted equilibrium states are dependent upon not only reservoir temperature and pressure, but also the compositions of the crude oil and injected gas. If the gas is sufficiently enriched, a miscible displacement is generated. Line is tangent to the phase envelope at the critical point (Point Z) and represents the limiting slope of the tie-lines as the critical state is approached. Point I therefore represents the minimum enrichment of injection gas required to generate a miscible displacement. Point G represents the minimum enrichment required for initial miscibility of the injection gas with Crude A.Attra has presented a method to be used for prediction of oil recovery by the enriched gas displacement process. To develop the phase behavior data needed, he designed the experimental procedure described in the following quotation from his paper SPEJ P. 160ˆ


1993 ◽  
Vol 319 ◽  
Author(s):  
Long-Qing Chen

AbstractA computer simulation technique based on the Master Equation Method (MEM) is developed for modeling the spatial distribution of vacancies during ordering and subsequent domain coalescence and coarsening. A vacancy mechanism is assumed for the atomic diffusion and the single-site approximation is employed. It is demonstrated that vacancies strongly segregate into the antiphase domain boundaries (APBs) during coarsening, resulting in the vacancy concentration at APBs more than an order of magnitude higher than that inside the ordered domains. As the antiphase domains coarsen, the vacancy concentration at the APBs continues to increase and its spatial s segregation profile moves accompanying the APB migration. The effect of vacancy concentration on the antiphase domain coarsening kinetics is discussed.


2007 ◽  
Vol 263 ◽  
pp. 237-242
Author(s):  
Krzysztof Adamaszek ◽  
Zbigniew Jurasz

In this paper we give a presentation of the recently developed approaches concerned of the rate of oxidation the Arema steel at high-temperature in first stage of this process. The comparison analysis was performed on the basis of the experimental results of oxidation of cylindrical specimens made of above steel. The experiment was carried out in chamber furnace on series of specimen with dimension Φ = 20 , l=30 mm. The specimens were oxidized at 1000 °C for 10 - 2280 minutes in air and then quenched in silica sand, afterwards were measured and weighed both with and without of scale. The analysis reveals that for longer oxidation time than one hour influence of linear dependence on parabolic growth of scale can be neglected.


1997 ◽  
Vol 56 (9) ◽  
pp. 5261-5270 ◽  
Author(s):  
Marcel Porta ◽  
Carlos Frontera ◽  
Eduard Vives ◽  
Teresa Castán

1994 ◽  
Vol 96 (1) ◽  
pp. 79-86 ◽  
Author(s):  
Carlos Frontera ◽  
Eduard Vives ◽  
Antoni Planes

2019 ◽  
pp. 1085-1112
Author(s):  
Imen Bizid ◽  
Nibal Nayef ◽  
Sami Faiz ◽  
Patrice Boursier

This chapter proposes a new approach for microblog information retrieval during unexpected disasters. This approach consists of identifying prominent microblog users who are susceptible to share relevant and exclusive information during a specific disaster. By tracking these users, emergency first responders would benefit from a direct access to the valuable information shared in real time in microblogs. In order to identify such users, we represent each microblog user according to his behavior at each particular disaster phase. Through the proposed users' representation, different prediction models are learned in order to identify prominent users at an early stage of each disaster phase. We experimented with different user representations, taking into account both the microblog user behavior and disaster context specificities. We also analyzed the importance of the different microblog users' features categories according to the disaster phase context. The achieved experimental results show the efficiency of our phase-aware-user characterization approach.


Sign in / Sign up

Export Citation Format

Share Document