Effects of Aging on the Toughness of Human Cortical Bone: A Study from Nano to Macro Size-Scales

2004 ◽  
Vol 844 ◽  
Author(s):  
Ravi K. Nalla ◽  
Jamie J. Kruzic ◽  
John H. Kinney ◽  
Mehdi Balooch ◽  
Joel W. Ager ◽  
...  

ABSTRACTAge-related deterioration of both the fracture properties and the architecture of bone, coupled with increased life expectancy, are factors leading to the increasing incidence of bone fracture in the elderly. In order to facilitate the development of treatments which counter this increased fracture risk, a thorough understanding of how fracture properties degrade with age is required. The present study describes ex vivo fracture experiments to quantitatively assess the effects of aging on the fracture toughness of human cortical bone in the longitudinal direction. Because cortical bone exhibits rising crack-growth resistance with crack extension, we depart from most previous studies by evaluating the toughness in terms of resistance-curve (R-curve) behavior, measured for bone taken from donors 34 to 99 years old. Using this approach, both the crack-initiation and crack-growth toughness are determined and are found to deteriorate with age; the initiation toughness decreases ∼40% from 40 to 100 years, while the growth toughness is effectively eliminated over the same age range. Evidence from x-ray synchrotron tomography is provided to support the hypothesis that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging at the microstructural level in the wake of the crack. Atomic force microscope-based nanoidentation of individual collagen fibers revealed changes at the collagen fibrillar level and deep-ultraviolet Raman spectroscopy showed that the cross-linking at the nanostructural level also changes with age. These results should provide for a better mechanistic understanding of the increased propensity for bone fracture with age.

2007 ◽  
Vol 129 (5) ◽  
pp. 625-631 ◽  
Author(s):  
Ani Ural ◽  
Deepak Vashishth

The extent to which increased intracortical porosity affects the fracture properties of aging and osteoporotic bone is unknown. Here, we report the development and application of a microcomputed tomography based finite element approach that allows determining the effects of intracortical porosity on bone fracture by blocking all other age-related changes in bone. Previously tested compact tension specimens from human tibiae were scanned using microcomputed tomography and converted to finite element meshes containing three-dimensional cohesive finite elements in the direction of the crack growth. Simulations were run incorporating age-related increase in intracortical porosity but keeping cohesive parameters representing other age-related effects constant. Additional simulations were performed with reduced cohesive parameters. The results showed a 6% decrease in initiation toughness and a 62% decrease in propagation toughness with a 4% increase in porosity. The reduction in toughnesses became even more pronounced when other age-related effects in addition to porosity were introduced. The initiation and propagation toughness decreased by 51% and 83%, respectively, with the combined effect of 4% increase in porosity and decrease in the cohesive properties reflecting other age-related changes in bone. These results show that intracortical porosity is a significant contributor to the fracture toughness of the cortical bone and that the combination of computational modeling with advanced imaging improves the prediction of the fracture properties of the aged and the osteoporotic cortical bone.


2017 ◽  
Vol 71 (10) ◽  
pp. 2385-2394 ◽  
Author(s):  
Alexander J. Makowski ◽  
Mathilde Granke ◽  
Oscar D. Ayala ◽  
Sasidhar Uppuganti ◽  
Anita Mahadevan-Jansen ◽  
...  

A decline in the inherent quality of bone tissue is a † Equal contributors contributor to the age-related increase in fracture risk. Although this is well-known, the important biochemical factors of bone quality have yet to be identified using Raman spectroscopy (RS), a nondestructive, inelastic light-scattering technique. To identify potential RS predictors of fracture risk, we applied principal component analysis (PCA) to 558 Raman spectra (370–1720 cm–1) of human cortical bone acquired from 62 female and male donors (nine spectra each) spanning adulthood (age range = 21–101 years). Spectra were analyzed prior to R-curve, nonlinear fracture mechanics that delineate crack initiation (Kinit) from crack growth toughness (Kgrow). The traditional ν1phosphate peak per amide I peak (mineral-to-matrix ratio) weakly correlated with Kinit (r = 0.341, p = 0.0067) and overall crack growth toughness (J-int: r = 0.331, p = 0.0086). Sub-peak ratios of the amide I band that are related to the secondary structure of type 1 collagen did not correlate with the fracture toughness properties. In the full spectrum analysis, one principal component (PC5) correlated with all of the mechanical properties (Kinit: r = − 0.467, Kgrow: r = − 0.375, and J-int: r = − 0.428; p < 0.0067). More importantly, when known predictors of fracture toughness, namely age and/or volumetric bone mineral density (vBMD), were included in general linear models as covariates, several PCs helped explain 45.0% (PC5) to 48.5% (PC7), 31.4% (PC6), and 25.8% (PC7) of the variance in Kinit, Kgrow, and J-int, respectively. Deriving spectral features from full spectrum analysis may improve the ability of RS, a clinically viable technology, to assess fracture risk.


Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S22
Author(s):  
K.K. Nishiyama ◽  
H.M. Macdonald ◽  
H.R. Buie ◽  
D.A. Hanley ◽  
S.K. Boyd

Author(s):  
Thomas Willett ◽  
David Josey ◽  
Rick Xing Ze Lu ◽  
Gagan Minhas ◽  
John Montesano

2003 ◽  
Vol 31 (11) ◽  
pp. 1365-1371 ◽  
Author(s):  
Xiaodu Wang ◽  
Xiaoe Li ◽  
Xinmei Shen ◽  
C. Mauli Agrawal

1995 ◽  
Vol 57 (3) ◽  
pp. 206-212 ◽  
Author(s):  
V. Nicolas ◽  
S. Mohan ◽  
Y. Honda ◽  
A. Prewett ◽  
R. D. Finkelman ◽  
...  

2006 ◽  
Vol 21 (8) ◽  
pp. 1878-1892 ◽  
Author(s):  
J.W. Ager ◽  
G. Balooch ◽  
R.O. Ritchie

From a public health perspective, developing a detailed mechanistic understanding of the well-known increase with age in fracture risk of human bone is essential. This also represents a challenge from materials science and fracture mechanics viewpoints. Bone has a complex, hierarchical structure with characteristic features ranging from nanometer to macroscopic dimensions; it is therefore significantly more complex than most engineering materials. Nevertheless, by examining the micro-/nanostructural changes accompanying the process of aging using appropriate multiscale experimental methods and relating them to fracture mechanics data, it is possible to obtain a quantitative picture of how bone resists fracture. As human cortical bone exhibits rising ex vivo crack-growth resistance with crack extension, its fracture toughness must be evaluated in terms of resistance-curve (R-curve) behavior. While the crack initiation toughness declines with age, the more striking finding is that the crack-growth toughness declines even more significantly and is essentially absent in bone from donors exceeding 85 years in age. To explain such an age-induced deterioration in the toughness of bone, we evaluate its fracture properties at multiple length scales, specifically at the molecular and nano dimensions using vibrational spectroscopies, at the microscale using electron microscopy and hard/soft x-ray computed tomography, and at the macroscale using R-curve measurements. We show that the reduction in crack-growth toughness is associated primarily with a degradation in the degree of extrinsic toughening, in particular involving crack bridging, and that this occurs at relatively coarse size scales in the range of tens to hundreds of micrometers. Finally, we briefly describe how specific clinical treatments, e.g., with steroid hormones to treat various inflammatory conditions, can prematurely damage bone, thereby reducing its fracture resistance, whereas regulating the level of the cytokine Transforming Growth Factor-β can offer significant improvements in the stiffness, strength, and toughness of bone and as such may be considered a therapeutic target to treat increased bone fragility induced by aging, drugs, and disease.


2015 ◽  
Vol 6 (3) ◽  
pp. 355-366
Author(s):  
F.G.A. Silva ◽  
M.F.S.F. de Moura ◽  
N Dourado ◽  
F. A. M. Pereira ◽  
J.J.L. Morais ◽  
...  

Purpose – Fracture characterization of human cortical bone under pure mode I loading was performed in this work. The purpose of this paper is to validate the proposed test and procedure concerning fracture characterization of human cortical bone under pure mode I loading. Design/methodology/approach – A miniaturized version of the double cantilever beam (DCB) test was used for the experimental tests. A data reduction scheme based on crack equivalent concept and Timoshenko beam theory is proposed to overcome difficulties inherent to crack length monitoring during the test. The application of the method propitiates an easy determination of the Resistance-curves (R-curves) that allow to define the fracture energy under mode I loading from the plateau region. The average value of fracture energy was subsequently used in a numerical analysis with element method involving cohesive zone modelling. Findings – The excellent agreement obtained reveals that the proposed test and associated methodology is quite effective concerning fracture characterization of human cortical bone under pure mode I loading. Originality/value – A miniaturized version of traditional DCB test was proposed for cortical human bone fracture characterization under mode I loading owing to size restrictions imposed by human femur. In fact, DCB specimen propitiates a longer length for self-similar crack propagation without undertaking spurious effects. As a consequence, a R-curve was obtained allowing an adequate characterization of cortical bone fracture under mode I loading.


Sign in / Sign up

Export Citation Format

Share Document