Magnetoresistive Sensors and Magnetic Nanoparticles for Biotechnology

2004 ◽  
Vol 853 ◽  
Author(s):  
Guenter Reiss ◽  
Hubert Brueckl ◽  
Andreas Huetten ◽  
Joerg Schotter ◽  
Monika Brzeska ◽  
...  

ABSTRACTMagnetoresistive Biosensors use a new detection method for molecular recognition reactions based on two recently developed techniques and devices: Magnetic markers and XMR –sensors, where XMR means either GiantMagneto- (GMR) or Tunneling-MagnetoResistance (TMR). The markers are specifically attached to the target molecules, and their magnetic stray field is picked up by the embedded magnetoresistive sensor as a change of the electrical resistance. Compared to established, e.g. fluorescent, detection methods, magnetic biosensors have a number of advantages, including low molecular detection limits, flexibility and the direct availability of an electronic signal suitable for further automated analysis. This makes them a promising choice for the detection units of future widespread and easy to use lab-on-a-chip systems or biochips.Both the measurement technique using XMR-sensors as well as new developments in the preparation of magnetic carriers are discussed here. Different configurations are discussed and the results for Giant Magnetoresistance sensors are compared to an analysis of the same biological systems marked with fluorescence dyes. Down to a concentration of about 10 pg/μl of, e.g., DNA molecules, the magnetoresistive technique is competitive with nowadays standard analysis methods. The capability of the TMR sensors to detect even single markers is additionally demonstrated by a model experiment using the tip of a magnetic force microscope to meamic the presence of a magnetic particle on top of the sensor surface.The magnetic carriers (beads) usually detected by the sensors consist of paramagnetic magnetite particles embedded in a polymer matrix with sizes from some μm down to about 100nm. They are linked to, e.g., DNA or proteins (often by a avidin-biotin bond) and thereby enable highly specific detection of complementary molecules. These magnetic particles often suffer from their broad size distribution and the relatively small magnetic moment. With the new colloidal synthesis of superpara- or ferromagnetic Co, CoFe and FePt nanocrystals by, e.g., pyrolythic decomposition of CVD precursor molecules, magnetic markers with superior magnetic moments, smaller size and size distribution can be produced. Here, the question about their potential to replace magnetite is addressed. Starting from a magnetic analysis of the corresponding magnetophoretic mobility of Co and FeCo based alloys their synthesis and resulting microstructural and magnetic properties as function of the underlying particle size distribution and the stability of the oleic acid ligand are discussed.Moreover, the magnetic particles offer an additional feature: They can be manipulated on chip via currents running through specially designed line patterns. We show, that this manipulation can be performed in a precise and reproducible manner, enabling locally enhanced concentration or even the measurement of binding forces with very low loading rates.

2005 ◽  
Vol 20 (12) ◽  
pp. 3294-3302 ◽  
Author(s):  
Guenter Reiss ◽  
Hubert Brueckl ◽  
Andreas Huetten ◽  
Joerg Schotter ◽  
Monika Brzeska ◽  
...  

Magnetoresistive biosensors use a new detection method for molecular recognition reactions based on two recently developed techniques and devices: Magnetic markers and XMR sensors, where XMR means either giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR). The markers are specifically attached to the target molecules, and their magnetic stray field is picked up by an embedded magnetoresistive sensor as a change of the electrical resistance. Compared to established, e.g., fluorescent, detection methods, magnetic biosensors have a number of advantages, including low molecular detection limits, flexibility, and the direct availability of an electronic signal suitable for further automated analysis. This makes them a promising choice for the detection units of future widespread and easy-to-use lab-on-a-chip systems or biochips. In this article, we discuss recent advances in this field and compare possible approaches toward single molecule detection.


2005 ◽  
Vol 56 (1) ◽  
pp. 135-143 ◽  
Author(s):  
N. R. A. Bird ◽  
A. R. Preston ◽  
E. W. Randall ◽  
W. R. Whalley ◽  
A. P. Whitmore

2017 ◽  
Vol 5 (47) ◽  
pp. 24836-24841 ◽  
Author(s):  
Luhong Fu ◽  
Gongzhen Cheng ◽  
Wei Luo

Monodisperse IrNiFe alloy nanoparticles with an average diameter of 2.2 nm have been synthesized by a colloidal synthetic method. By taking advantage of the synergistic effect between Ir, Ni and Fe and the ultrasmall NPs with narrow size distribution, the as-synthesized IrNiFe catalyst exhibits superior HER/OER performances in acidic media.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5819
Author(s):  
Lukas Wetterau ◽  
Claas Abert ◽  
Dieter Suess ◽  
Manfred Albrecht ◽  
Bernd Witzigmann

We present a numerical investigation on the detection of superparamagnetic labels using a giant magnetoresistance (GMR) vortex structure. For this purpose, the Landau–Lifshitz–Gilbert equation was solved numerically applying an external z-field for the activation of the superparamagnetic label. Initially, the free layer’s magnetization change due to the stray field of the label is simulated. The electric response of the GMR sensor is calculated by applying a self-consistent spin-diffusion model to the precomputed magnetization configurations. It is shown that the soft-magnetic free layer reacts on the stray field of the label by shifting the magnetic vortex orthogonally to the shift direction of the label. As a consequence, the electric potential of the GMR sensor changes significantly for label shifts parallel or antiparallel to the pinning of the fixed layer. Depending on the label size and its distance to the sensor, the GMR sensor responds, changing the electric potential from 26.6 mV to 28.3 mV.


2004 ◽  
Vol 241 (4) ◽  
pp. 916-924
Author(s):  
Changzheng Wang ◽  
Zhenghong Guo ◽  
Yonghua Rong ◽  
T. Y. Hsu

2009 ◽  
Vol 105 (7) ◽  
pp. 07E713 ◽  
Author(s):  
Kisu Lee ◽  
Seungkyo Lee ◽  
Jeong-Ryul Kim ◽  
B. K. Cho

Author(s):  
Klaus Blaum ◽  
Günter Werth

Abstract“A single atomic particle forever floating at rest in free space” (H. Dehmelt) would be the ideal object for precision measurements of atomic properties and for tests of fundamental theories. Such an ideal, of course, can ultimately never be achieved. A very close approximation to this ideal is made possible by ion traps, where electromagnetic forces are used to confine charged particles under well-controlled conditions for practically unlimited time. Concurrently, sensitive detection methods have been developed to allow observation of single stored ions. Various cooling methods can be employed to bring the trapped ion nearly to rest. Among different realisations of ion traps we consider in this chapter the so-called Penning traps which use static electric and magnetic fields for ion confinement. After a brief discussion of Penning-trap properties, we consider various experiments including the application of the “continuous Stern-Gerlach effect”, which have led recently to precise determinations of the masses and magnetic moments of particles and antiparticles. These serve as input for testing fundamental theories and symmetries.


Sign in / Sign up

Export Citation Format

Share Document