scholarly journals Electronic and Optical Properties of Energetic Particle-Irradiated In-rich InGaN

2005 ◽  
Vol 864 ◽  
Author(s):  
S.X. Li ◽  
K.M. Yu ◽  
R.E. Jones ◽  
J. Wu ◽  
W. Walukiewicz ◽  
...  

AbstractWe have carried out a systematic study of the effects of irradiation on the electronic and optical properties of InGaN alloys over the entire composition range. High energy electrons, protons, and 4He+ were used to produce displacement damage doses (Dd) spanning over five orders of magnitude. The free electron concentrations in InN and In-rich InGaN increase with Dd and finally saturate after a sufficiently high Dd. The saturation of carrier density is attributed to the formation of native donors and the Fermi level pinning at the Fermi Stabilization Energy (EFS), as predicted by the amphoteric native defect model. Electrochemical capacitance-voltage (ECV) measurements reveal a surface electron accumulation whose concentration is determined by pinning at EFS.

2010 ◽  
Vol 77 (5) ◽  
pp. 668-674 ◽  
Author(s):  
A. V. Karotki ◽  
A. V. Mudryi ◽  
M. V. Yakushev ◽  
F. Luckert ◽  
R. Martin

2020 ◽  
Vol 34 (20) ◽  
pp. 2050195
Author(s):  
Gang Li ◽  
Lei Liu ◽  
Jian Tian

To explore the variation on p-type-doped two-dimensional GaN, we calculate electronic and optical properties of buckled two-dimensional GaN-doped with p-type doping elements including Be, Mg and Zn atom by using first-principles. The results indicate that doping process of two-dimensional GaN after Be is most easily compared with Mg- and Zn-doped models. Band of doped two-dimensional GaN moves toward high energy end and it becomes a p-type semiconductor from the results of band structure and density of states, which may be caused by orbitals hybridization from dopants. Band gap and work function of doped two-dimensional GaN are both declined, which is beneficial for escape of electrons. Analysis of optical properties shows that they are sensitive and adjustable in doped two-dimensional GaN. Doping of Be, Mg and Zn atoms would have an important effect on optical characteristics of two-dimensional GaN at low-energy region.


Author(s):  
Alexander V. Kir’yanov ◽  
Arindam Halder

The basic optical properties of yttrium-phosphosilicate fiber doped with bismuth (Bi) are assessed in both pristine state and that established after bombardment by a beam of high-energy electrons. The fiber has been developed and fabricated with a target to use it for laser applications in visible/near-infrared (VIS/NIR) domain. In this chapter, the main attention is paid to the dramatic changes in absorption spectra of the fiber under electron irradiation. Meanwhile, we reveal its overall resistance to irradiation in terms of emissive potential and bleaching contrast at excitation into the absorption bands of bismuth-related active centers. Besides, we report a new effect of large dose-dependent Stokes shift, experienced by the fiber’s cutoff wavelength, which arises due to refractive index rise in its core area. The laws obeyed by the fiber’s characteristics vs. dose are examined for possible applications in dosimetry.


2018 ◽  
Vol 6 (5) ◽  
pp. 2346-2352 ◽  
Author(s):  
Jun Zhou ◽  
Ximing Rong ◽  
Maxim S. Molokeev ◽  
Xiuwen Zhang ◽  
Zhiguo Xia

The anti-site defect model was established to investigate transposition influence on the optical and electronic properties of the double-perovskite Cs2AgSbCl6.


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-529-C5-532 ◽  
Author(s):  
F. LARUELLE ◽  
V. THIERRY-MIEG ◽  
M. C. JONCOUR ◽  
B. ETIENNE

2021 ◽  
Vol 67 (1 Jan-Feb) ◽  
pp. 7
Author(s):  
B. Bachir Bouiadjra ◽  
N. Mehnane ◽  
N. Oukli

Based on the full potential linear muffin-tin orbitals (FPLMTO) calculation within density functional theory, we systematically investigate the electronic and optical properties of (100) and (110)-oriented (InN)/(GaN)n zinc-blende superlattice with one InN monolayer and with different numbers of GaN monolayers. Specifically, the electronic band structure calculations and their related features, like the absorption coefficient and refractive index of these systems are computed over a wide photon energy scale up to 20 eV. The effect of periodicity layer numbers n on the band gaps and the optical activity of (InN)/(GaN)n SLs in the both  growth axis (001) and (110) are examined and compared. Because of prospective optical aspects of (InN)/(GaN)n such as light-emitting applications, this theoretical study can help the experimental measurements.


Sign in / Sign up

Export Citation Format

Share Document