Effective Dopant Analysis for the High Performance Poly(3-Hexylthiophene) Field-Effect Transistors

2005 ◽  
Vol 871 ◽  
Author(s):  
Shinichi Kawamura ◽  
Manabu Yoshida ◽  
Satoshi Hoshino ◽  
Toshihide Kamata

AbstractThe relationship between impurity species included in regioregular poly(3-hexylthiophene) (P3HT) and the field effect transistors (FETs) property was investigated. P3HT synthesized by the Rieke method contained only Zn, Ni and Br (free halogen) as impurities. Several kinds of P3HT with different purities by using purification techniques were prepared, and those P3HT-FETs properties were estimated. As a result, it is revealed that the free halogen is effective dopant to increase the FET mobility, and the removal of the catalyst metal (Zn and Ni) is also effective to decrease off-current.

Nanophotonics ◽  
2020 ◽  
Vol 9 (16) ◽  
pp. 4719-4728
Author(s):  
Tao Deng ◽  
Shasha Li ◽  
Yuning Li ◽  
Yang Zhang ◽  
Jingye Sun ◽  
...  

AbstractThe molybdenum disulfide (MoS2)-based photodetectors are facing two challenges: the insensitivity to polarized light and the low photoresponsivity. Herein, three-dimensional (3D) field-effect transistors (FETs) based on monolayer MoS2 were fabricated by applying a self–rolled-up technique. The unique microtubular structure makes 3D MoS2 FETs become polarization sensitive. Moreover, the microtubular structure not only offers a natural resonant microcavity to enhance the optical field inside but also increases the light-MoS2 interaction area, resulting in a higher photoresponsivity. Photoresponsivities as high as 23.8 and 2.9 A/W at 395 and 660 nm, respectively, and a comparable polarization ratio of 1.64 were obtained. The fabrication technique of the 3D MoS2 FET could be transferred to other two-dimensional materials, which is very promising for high-performance polarization-sensitive optical and optoelectronic applications.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Muhammad Naqi ◽  
Kyung Hwan Choi ◽  
Hocheon Yoo ◽  
Sudong Chae ◽  
Bum Jun Kim ◽  
...  

AbstractLow-temperature-processed semiconductors are an emerging need for next-generation scalable electronics, and these semiconductors need to feature large-area fabrication, solution processability, high electrical performance, and wide spectral optical absorption properties. Although various strategies of low-temperature-processed n-type semiconductors have been achieved, the development of high-performance p-type semiconductors at low temperature is still limited. Here, we report a unique low-temperature-processed method to synthesize tellurium nanowire networks (Te-nanonets) over a scalable area for the fabrication of high-performance large-area p-type field-effect transistors (FETs) with uniform and stable electrical and optical properties. Maximum mobility of 4.7 cm2/Vs, an on/off current ratio of 1 × 104, and a maximum transconductance of 2.18 µS are achieved. To further demonstrate the applicability of the proposed semiconductor, the electrical performance of a Te-nanonet-based transistor array of 42 devices is also measured, revealing stable and uniform results. Finally, to broaden the applicability of p-type Te-nanonet-based FETs, optical measurements are demonstrated over a wide spectral range, revealing an exceptionally uniform optical performance.


2012 ◽  
Vol 24 (34) ◽  
pp. 4589-4589 ◽  
Author(s):  
Huajie Chen ◽  
Yunlong Guo ◽  
Gui Yu ◽  
Yan Zhao ◽  
Ji Zhang ◽  
...  

2009 ◽  
Vol 21 (2) ◽  
pp. NA-NA ◽  
Author(s):  
Hoi Nok Tsao ◽  
Don Cho ◽  
Jens Wenzel Andreasen ◽  
Ali Rouhanipour ◽  
Dag W. Breiby ◽  
...  

2017 ◽  
Vol 53 (43) ◽  
pp. 5898-5901 ◽  
Author(s):  
Sureshraju Vegiraju ◽  
Deng-Yi Huang ◽  
Pragya Priyanka ◽  
Yo-Shan Li ◽  
Xian-Lun Luo ◽  
...  

DDTT-TTARexhibits the highest mobility of 0.81 cm2V−1s−1.


1999 ◽  
Vol 74 (14) ◽  
pp. 1996-1998 ◽  
Author(s):  
Wen-Chau Liu ◽  
Wen-Lung Chang ◽  
Hsi-Jen Pan ◽  
Kuo-Hui Yu ◽  
Shung-Ching Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document