FGM Fabrication by Combustion Synthesis

MRS Bulletin ◽  
1995 ◽  
Vol 20 (1) ◽  
pp. 52-53 ◽  
Author(s):  
Gregory C. Stangle ◽  
Yoshinari Miyamoto

FGMs have been fabricated using the combustion synthesis (or self-propagating high-temperature synthesis (SHS)) process by exploiting a rapid and exothermic chemical reaction, in order to synthesize some (or all) of the constituents in an FGM to simultaneously increase its density. The thermal energy required to drive the process is derived from this internal, chemical source, rather than from an external and usually expensive source (e.g., a furnace). The combustion synthesis process is a powder-based process that has been used to synthesize over 300 compounds, and is particularly useful in preparing materials such as highly refractory ceramics and high-temperature intermetallics that are difficult to prepare by other synthesis methods. In addition, the process can be used to prepare ceramic-metal and ceramic-intermetallic composite materials. As a result, only slight modifications of the combustion synthesis are required to prepare functionally gradient materials from these same combinations of materials.Sample preparation begins by the creation of a series of mixtures from the powders that will react to form the constituent materials of the FGM sample. Each of these mixtures contains a slightly different percentage of reactants, so that each mixture will yield its own (predetermined) volume fraction of each of its constituents, following the combustion synthesis process. Prior to the combustion step, the samples are assembled by stacking layers of each of the reactant powder mixtures in appropriate amounts, in such a way that the multilayered powder mixture will faithfully produce the composition gradient that is required in the resultant FGM.

2015 ◽  
Vol 1768 ◽  
Author(s):  
Juan C. Restrepo ◽  
Andrés Chavarriaga ◽  
Oscar J. Restrepo ◽  
Jorge I. Tobón

ABSTRACTPortland cement is synthesized from a mixture of limestone and clay at high temperature (1450 °C) via a conventional process (solid-phase synthesis), in which partial fusion of raw materials and the formation of clinker nodules are produced. The clinker is mixed with a small percentage of gypsum and ground together to make the cement. This synthesis process holds the cement industry accountable for 5–8% of global anthropogenic CO2 emissions. The production of a ton of cement emits between 0.62 and 0.97 tons of CO2 into the atmosphere, depending on the processing plant. Furthermore, the use of fossil fuels in cement production is another important factor in the environmental impact of this industry. The production of 1 ton of clinker consumes approximately 5.86 GJ per tons of clinker produced in wet processes and 3.35 GJ per tons of clinker produced by dry process. Some researches have reported the possibility to obtain silicate and aluminate cements by alternative synthesis methods, which optimize both time and temperature, such as Pechini method, sol-gel method and microwave assisted method. The combustion methods, another alternative, are chemical redox processes in which the use of chemical precursors and organic fuels at high temperature generate a self-sustaining fastwave. The said wave is characterized by the fact that once the initial exothermic reaction starts, it generates a reaction wave (0.1–10 cm/s) at high temperature (1000–3000 °C) that propagates, in a self-sustaining way, through the heterogeneous mixture which leads to the formation of the solid material. For this reason, and the irreplaceable role of cement in the construction industry, this paper shows the advances in the production of silicates, similar to those found in the Portland cement, by combustion synthesis method.This paper shows the production of calcium silicates similar to the silicates of Portland cement, by combustion synthesis. Thermal analysis and XRD techniques were used to compare the syhthetized silicates with alite and belite of Portland cement.


1995 ◽  
Vol 10 (11) ◽  
pp. 2829-2841 ◽  
Author(s):  
Cheng He ◽  
Gregory C. Stangle

The mechanism and kinetics of the chemical reaction between Nb(s) and C(s) under self-propagating high-temperature synthesis (SHS)-like (or combustion synthesis-like) conditions have been studied. Experiments were designed and conducted in order to produce a transport-resistance-free reaction between Nb and C under time-temperature conditions that are characteristic of the combustion synthesis process. To do so, a reaction couple, consisting of carbon and either a thin niobium foil or a fine niobium wire, was used. The effects of the temperature history and the formation of a liquid phase on the reaction were studied. In addition, theoretical experiments of the reaction were also conducted. The results showed that at high temperatures, layered niobium carbide phases formed in a direction that was parallel to the original carbon-niobium interface. As might be expected, local melting played a very significant role in the reactions. The mechanism and kinetics of these reactions provide a fundamental understanding of the manner and rate by which a powder-based Nb/C SHS process takes place, and, by extension, to a large, general class of solid-solid material synthesis processes that are based on the SHS (or combustion synthesis) process.


2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


2020 ◽  
Vol 15 (4) ◽  
pp. 27-32
Author(s):  
Irina V. Milyukova ◽  
Marina P. Boronenko

The work is devoted to the technology for the reduction of molybdenum from oxides by the method of self-propagating high-temperature synthesis in the MoO3 AI system with the addition of aluminum. The experiment was carried out in two modes: in a reactor at different pressures without preliminary heating and in a furnace in air until the initiation of the SH-synthesis process. Samples of molybdenum metal were obtained in different synthesis modes. X-ray phase and X-ray spectral analysis showed that molybdenum is the main phase in the synthesized samples. The presence of slag oxide phases Al2O3 and MoO2 was detected.


2005 ◽  
Vol 475-479 ◽  
pp. 1627-1630 ◽  
Author(s):  
Rui Zhu Zhang ◽  
Zhi Meng Guo ◽  
Cheng Chang Jia ◽  
Guangfeng Lu

This paper researched the fabrication of perovskite synrock by self-propagating high temperature synthesis (SHS) and the characterization of the products. This synthesis process is simpler, the fabricated synrock can immobilize waste loading up to 35wt% SrO with satisfied physical properties (density>4.2g•cm-3, open porosity<0.2%, Leach rate<1.0 g•m-2•d-1). The structure analyses by XRD and SEM/EDS show that the major phase is perovskite which well agrees with the design. It proves that SHS offer a suitable Sr-waste synroc which is favorable for geological disposal.


Sign in / Sign up

Export Citation Format

Share Document