RESULTS OF VIBRATION MONITORING OF VIBRO-DRIVING AND VIBRO-EXTRACTION OF SHEET PILES

2021 ◽  
Vol 12 (1) ◽  
pp. 5-17
Author(s):  
I. K Lobov ◽  
D. V Penkov ◽  
V. M Polunin

The geology of St. Petersburg is represented with a heavy layer of weak structurally unstable soils. Using of vibro-extraction and vibro-driving of sheet piles in such conditions requires a particularly responsible approach in order to predict the emerging dynamic effects and the zones of their influence on the surrounding buildings and structures. Therefore, the task of looking for possible patterns describing these processes is highly relevant. For this purpose, the authors have updated the map of engineering-geological zoning according to Zavarzin with use of more than 50 reports of engineering-geological surveys. On this map the sensitive to the high-frequency vibrations soil layers are identified. Also, more than 70 reports on vibration monitoring of vibration driving and vibration extraction of sheet piles in St. Petersburg have been analyzed. The influence on the value of vibration acceleration of the following factors has been investigated: the geological features of the site, the distance to the source of vibrations, the characteristics of the vibrating hammer (operating frequency, driving force) and sheet pile (length, cross section), the location of measurements (on the ground or on a structural element of the building). The result of the work is the diagrams that clearly show the presence or absence of a relationship between the studied parameters. The absence of dependencies for some of the investigated parameters may be caused by the factors which influence cannot be predicted. These factors are the occurrence of large friction forces in the joints of sheet piles; the presence of lenses of dense soils or boulders during sheet piles driving; violations of the technological process. The zone of the influence of high-frequency dynamic impact was identified as 25 meters, which is in good agreement with the results of in-situ monitoring.

Frequenz ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Philipp Lenz ◽  
Armin Wittmann ◽  
Georg Fischer

AbstractIn this paper, a methodical approach for the in-situ monitoring of the mechanical wear of electrical conductors is presented. The state of life can be assessed by means of the characteristic attenuation of an applied high-frequency alternating current. The advantages of this approach include its non-destructive nature and the applicability to installed and otherwise inaccessible conductors.


2018 ◽  
Vol 60 (7-8) ◽  
pp. 727-732
Author(s):  
Uğur Çavdar ◽  
İ. Murat Kusoglu ◽  
Ayberk Altintas

2021 ◽  
Vol 326 ◽  
pp. 129007
Author(s):  
Zahra Nasri ◽  
Giuliana Bruno ◽  
Sander Bekeschus ◽  
Klaus-Dieter Weltmann ◽  
Thomas von Woedtke ◽  
...  

2021 ◽  
pp. 2105799
Author(s):  
Yu Zhang ◽  
Li Yang ◽  
Jintao Wang ◽  
Wangying Xu ◽  
Qiming Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document