scholarly journals A New Control Strategy Based Multi Converter UPQC Using Fuzzy Logic Controller to Improve the Power Quality Issues

Author(s):  
Chandra Babu Paduchuri ◽  
Subhransu Sekhar Dash ◽  
Subramani Chinnamuthu
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


2006 ◽  
Vol 111 ◽  
pp. 167-170
Author(s):  
M. Shahidul Karim ◽  
Rashed Mustafa

The constantly increasing performance/price ratio of microcontrollers means electronic system can replace more and more electromechanical ones. In design, the goal is not to just replace the solution but also to improve it by adding new functionalities. The paper presents a model of industrial controller having possibility of the classical programming controller, with added elements of the fuzzy logic. Here fuzzy logic offers a technical control strategy that uses elements of everyday language. In this application, it is used to design a control strategy that adapts to the need of individual user. It achieves a higher comfort level and reduces energy consumption. Here we have used a fuzzy method which selects the contractions that best meet the specifications, where human knowledge is involved in a decision making process. With a fuzzy-logic software development system, the entire system, which includes conventional code for signal preprocessing as well as the fuzzy logic system, can be implemented on an industry-standard microcontroller. Using fuzzy logic on such a low-cost platform makes this a possible solution with most AC systems. Each home AC has a sensor that measures room temperature and compares it with the temperature set on the dial. The fuzzy logic controller uses a bimetallic switch and compares the set temperature with room temperature.


This paper accord the Power Quality interpretation to make apparent for electricity consumers been made better power quality with application of DVR.Despite of advantages of DVR, it focuses full extent of the relatedness surrounded by loads, various power networks. DVR is most accepted power device which could be used for better solution for the disturbances of voltages in distribution systems for sensitive loads. For efficiency considerations, the DVR mostly hinge on an act of presenting the control modus, and can be harnessed to switching the inverters. Reliability of hysteresis voltage control with ease in operation under variable switching frequency can be trustworthy for a DVR can introduced and the proposed methods achieves good compensation of voltages under disturbances and can be seen by the simulation by using fuzzy logic controller.


Author(s):  
Bennett Breese ◽  
Drew Scott ◽  
Shraddha Barawkar ◽  
Manish Kumar

Abstract Tethered drone systems can be used to perform long-endurance tasks such as area surveillance and relay stations for wireless communication. However, all the existing systems use tethers only for data and power transmission from a stationary point on the ground. This work presents a control strategy that enables a quadcopter to follow a moving tether anchor. A force feedback controller is implemented using Fuzzy Logic. Using force-based strategy provides effective compliance between the tether’s anchor and the drone. The drone can thus be controlled by mere physical movement/manipulation of tether. This enhances the safety of current tethered drone systems and simplifies the flying of drones. Fuzzy Logic provides an intuitive edge to the control of such systems and allows handling noise in force sensors. Extensive simulation results are presented in this paper showing the effectiveness of the proposed control scheme.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 946 ◽  
Author(s):  
Felice De Luca ◽  
Vito Calderaro ◽  
Vincenzo Galdi

Energy demand associated with the ever-increasing penetration of electric vehicles on worldwide roads is set to rise exponentially in the coming years. The fact that more and more vehicles will be connected to the electricity network will offer greater advantages to the network operators, as the presence of an on-board battery of discrete capacity will be able to support a whole series of ancillary services or smart energy management. To allow this, the vehicle must be equipped with a bidirectional full power charger, which will allow not only recharging but also the supply of energy to the network, playing an active role as a distributed energy resource. To manage recharge and vehicle-to-grid (V2G) operations, the charger has to be more complex and has to require a fast and effective control structure. In this work, we present a control strategy for an integrated on-board battery charger with a nine-phase electric machine. The control scheme integrates a fuzzy logic controller within a voltage-oriented control strategy. The control has been implemented and simulated in Simulink. The results show how the voltage on the DC-bus is controlled to the reference value by the fuzzy controller and how the CC/CV charging mode of the battery is possible, using different charging/discharging current levels. This allows both three-phase fast charge and V2G operations with fast control response time, without causing relevant distortion grid-side (Total Harmonic Distortion is maintained around 3%), even in the presence of imbalances of the machine, and with very low ripple stress on the battery current/voltage.


Sign in / Sign up

Export Citation Format

Share Document