scholarly journals A REVIEW OF MULTIHOP BASED MEDIUM ACCESS CONTROL (MAC) PROTOCOL TO TACKLE BOTH MULTIPLE ACCESS AND MULTIHOP ISSUES IN WIRELESS MESH NETWORK (WMN)

Author(s):  
Vigneswara Rao Gannapathy ◽  
Lim Kim Chuan ◽  
Siva Kumar Subramaniam ◽  
Zahriladha Bin Zakaria
Author(s):  
Djamel Tandjaoui ◽  
Messaoud Doudou ◽  
Imed Romdhani

In this article, the authors propose a new hybrid MAC protocol named H-MAC for wireless mesh networks. This protocol combines CSMA and TDMA schemes according to the contention level. In addition, it exploits channel diversity and provides a medium access control method that ensures the QoS requirements. Using ns-2 simulator, we have implemented and compared H-MAC with other MAC protocol used in Wireless Network. The results showed that H-MAC performs better compared to Z-MAC, IEEE 802.11 and LCM-MAC.


2009 ◽  
Vol 1 (4) ◽  
pp. 40-56
Author(s):  
Djamel Tandjaoui ◽  
Messaoud Doudou ◽  
Imed Romdhani

In this article, the authors propose a new hybrid MAC protocol named H-MAC for wireless mesh networks. This protocol combines CSMA and TDMA schemes according to the contention level. In addition, it exploits channel diversity and provides a medium access control method that ensures the QoS requirements. Using ns-2 simulator, we have implemented and compared H-MAC with other MAC protocol used in Wireless Network. The results showed that H-MAC performs better compared to Z-MAC, IEEE 802.11 and LCM-MAC.


Author(s):  
Zaid Hashim Jaber ◽  
Dheyaa Jasim Kadhim ◽  
Ahmed Sabah Al-Araji

<p><span>Medium access control (MAC) protocol design plays a crucial role to increase the performance of wireless communications and networks. The channel access mechanism is provided by MAC layer to share the medium by multiple stations. Different types of wireless networks have different design requirements such as throughput, delay, power consumption, fairness, reliability, and network density, therefore, MAC protocol for these networks must satisfy their requirements. In this work, we proposed two multiplexing methods for modern wireless networks: Massive multiple-input-multiple-output (MIMO) and power domain non-orthogonal multiple access (PD-NOMA). The first research method namely Massive MIMO uses a massive number of antenna elements to improve both spectral efficiency and energy efficiency. On the other hand, the second research method (PD-NOMA) allows multiple non-orthogonal signals to share the same orthogonal resources by allocating different power level for each station. PD-NOMA has a better spectral efficiency over the orthogonal multiple access methods. A review of previous works regarding the MAC design for different wireless networks is classified based on different categories. The main contribution of this research work is to show the importance of the MAC design with added optimal functionalities to improve the spectral and energy efficiencies of the wireless networks.</span></p>


Author(s):  
Eric E. Petrosky ◽  
Alan J. Michaels ◽  
Joseph M. Ernst

Low power, low cost, and security-conscious wireless sensor networks are becoming increasingly pervasive in the internet of things (IoT). In these networks, receiver-assigned code division multiple access (RA-CDMA) offers benefits over existing multiple access techniques. RA-CDMA networks are asynchronous, robust against multipath interference, and offer resilience against collision. A lightweight medium access control (MAC) protocol is needed to facilitate communication in RA-CDMA networks between low power sensor nodes and access points. This article provides an overview of RA-CDMA and proposes elements of a new MAC protocol that could improve performance of certain wireless sensor networks. Key features of the proposed MAC design are introduced and compared to those of existing protocols, highlighting its simple and lightweight design. Through its compatibility with RA-CDMA, the MAC design eliminates significant overhead and complexity while meeting requirements for low power networks, which enables the implementation of dense IoT sensor networks.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Meiqin Tang ◽  
Lili Shang ◽  
Yalin Xin ◽  
Xiaohua Liu ◽  
Xinjiang Wei

This paper investigates the utility maximization problem for the downlink of the multi-interface multichannel wireless mesh network with orthogonal frequency division multiple access. A cross-layer joint power and multiple access control algorithm are proposed. Rosen projection matrix is combined with Solodov projection techniques to build a three-memory gradient Rosen projection method, which is applied to solve this optimization problem. The convergence analysis is given and simulations show that the proposed solution achieves significant throughput compared with existing approaches.


2014 ◽  
Vol 696 ◽  
pp. 215-221
Author(s):  
Wen Qi Fan ◽  
Sheng Chun Huang ◽  
Ji Bo Wei

Wireless Mesh Networks (WMN) is distributed broadband wireless network architecture with characteristic of high throughput and high data rate. The quantity of research being conducted in this area has dramatically increased recently. Medium Access Control (MAC) is the key technology to exploit the multi-hop advantage of WMN. This paper introduces two major research topic of MAC design in WMN, the topology control and link scheduling. A survey of recent research on these topics is given in detail.


Sign in / Sign up

Export Citation Format

Share Document