scholarly journals Nonlinear buckling of CNT-reinforced composite toroidal shell segment surrounded by an elastic medium and subjected to uniform external pressure

2018 ◽  
Vol 40 (3) ◽  
pp. 285-301
Author(s):  
Hoang Van Tung ◽  
Pham Thanh Hieu

Buckling and postbuckling behaviors of Toroidal Shell Segment (TSS) reinforced by single-walled carbon nanotubes (SWCNT), surrounded by an elastic medium and subjected to uniform external pressure are investigated in this paper. Carbon nanotubes (CNTs) are reinforced into matrix phase by uniform distribution (UD) or functionally graded (FG) distribution along the thickness direction. Effective properties of carbon nanotube reinforced composite (CNTRC) are estimated by an extended rule of mixture through a micromechanical model. Governing equations for TSSs are based on the classical thin shell theory taking into account geometrical nonlinearity and surrounding elastic medium. Three-term solution of deflection and stress function are assumed to satisfy simply supported boundary condition, and Galerkin method is applied to obtain nonlinear load-deflection relation from which buckling loads and postbuckling equilibrium paths are determined. The effects of CNT volume fraction, distribution types, geometrical ratios and elastic foundation on the buckling and postbuckling behaviors of CNTRC TSSs are analyzed and discussed.

Author(s):  
Pham Thanh Hieu ◽  
Hoang Van Tung

Buckling and postbuckling behaviors of toroidal shell segment reinforced by single-walled carbon nanotubes, surrounded by an elastic medium, exposed to a thermal environment and subjected to uniform external pressure are investigated in this paper. Carbon nanotubes are reinforced into matrix phase by uniform distribution or functionally graded distribution along the thickness direction. Material properties of constituents are assumed to be temperature dependent, and the effective properties of carbon nanotube reinforced composite are estimated by extended mixture rule through a micromechanical model. Governing equations for toroidal shell segments are based on the classical thin shell theory taking into account geometrical nonlinearity, surrounding elastic medium, and varying degree of tangential constraints of edges. Three-term solution of deflection and stress function are assumed to satisfy simply supported boundary condition, and Galerkin method is applied to derive nonlinear load–deflection relation from which buckling loads and postbuckling equilibrium paths are determined. Analysis shows that tangential edge restraints have significant effects on nonlinear buckling of carbon nanotube reinforced composite toroidal shell segments. In addition, the effects of carbon nanotube volume fraction, distribution types, geometrical ratios, elastic foundation, and thermal environments on the buckling and postbuckling behaviors of carbon nanotube reinforced composite toroidal shell segments are analyzed and discussed.


2018 ◽  
Vol 32 (10) ◽  
pp. 1319-1346 ◽  
Author(s):  
Pham Thanh Hieu ◽  
Hoang Van Tung

Cylindrical shells are usually buckled under complex and combined loading conditions. This article presents an analytical approach to investigate the buckling and postbuckling behaviors of cylindrical shells reinforced by single-walled carbon nanotubes, surrounded by an elastic medium, exposed to thermal environments, and subjected to combined axial compression and lateral pressure loads. Carbon nanotubes (CNTs) are imbedded into matrix phase by uniform distribution or functionally graded distribution along the thickness direction. The properties of constituents are assumed to be temperature dependent, and effective properties of CNT-reinforced composite (CNTRC) are determined by an extended rule of mixture. Governing equations are based on the classical shell theory (CST) taking von Karman–Donnell nonlinearity and surrounding elastic foundations into consideration. Three-term form of deflection is assumed to satisfy simply supported boundary conditions, and Galerkin method is applied to obtain nonlinear load–deflection relations from which buckling loads and postbuckling equilibrium paths are determined. Numerical examples are carried out to show the effects of CNT volume fraction, distribution types, thermal environments, preexisting nondestabilizing lateral pressure and axial compression loads, and elastic medium on the buckling and postbuckling behaviors of CNTRC cylindrical shells.


2019 ◽  
Vol 8 (1) ◽  
pp. 582-596 ◽  
Author(s):  
Le Thi Nhu Trang ◽  
Hoang Van Tung

Abstract Nonlinear stability of nanocomposite spherical and cylindrical panels reinforced by carbon nanotubes (CNTs), resting on elastic foundations and subjected to uniform external pressure in thermal environments is investigated in this paper. CNTs are embedded into matrix phase through uniform distribution (UD) or functionally graded (FG) distribution, and effective properties of CNT-reinforced composite are estimated through an extended rule of mixture. Governing equations are based on classical shell theory taking geometrical nonlinearity, initial geometrical imperfection and panel-foundation interaction into consideration. Approximate solutions of deflection and stress functions are assumed to satisfy simply supported boundary conditions and Galerkin method is applied to obtain nonlinear load-deflection relation. Numerical examples show the effects of volume fraction and distribution type of CNTs, in-plane condition of edges, curvature of panel, thermal environments, elastic foundations and imperfection size on the nonlinear response and snap-through instability of the curved panels. The present study reveals that efficiency of CNT distribution type depends on curvature of panel and in-plane behavior of boundary edges, and bifurcation type buckling response of pressure-loaded panels may occur at elevated temperature.


2013 ◽  
Vol 7 (1) ◽  
pp. 48-52
Author(s):  
Heorhiy Sulym ◽  
Iaroslav Pasternak ◽  
Serhiy Kutsyk ◽  
Wojciech Grodzki

Abstract This paper considers the doubly periodic problem of elasticity for anisotropic solids containing regular sets of thin branched inclusions. A coupling principle for continua of different dimension is utilized for modeling of thin inhomogeneities and the boundary element technique is adopted for numerical solution of the problem. The branches of the inclusion can interact both inside the representative volume element and at the interface of neighbor representative elements. A particular example of the elastic medium reinforced by a doubly periodic set of I-beams is considered. Stress intensity and stress concentration inside and outside thin inclusions are determined. The dependence of the effective mechanical properties of the reinforced composite material on the volume fraction of the filament and its rigidity is obtained.


Author(s):  
Le Thi Nhu Trang ◽  
Hoang Van Tung

Geometrically nonlinear response of doubly curved panels reinforced by carbon nanotubes exposed to thermal environments and subjected to uniform external pressure are presented in this paper. Carbon nanotubes are reinforced into isotropic matrix through uniform and functionally graded distributions. Material properties of constituents are assumed to be temperature dependent, and effective elastic moduli of carbon nanotube-reinforced composite are determined according to an extended rule of mixture. Basic equations for carbon nanotube-reinforced composite doubly curved panels are established within the framework of first-order shear deformation theory. Analytical solutions are assumed, and Galerkin method is used to derive closed-form expressions of nonlinear load–deflection relation. Separate and combined effects of carbon nanotube distribution and volume fraction, elasticity of in-plane constraint, elevated temperature, initial imperfection, geometrical ratios and stiffness of elastic foundations on the nonlinear stability of nanocomposite doubly curved panels are analyzed through numerical examples.


2019 ◽  
pp. 089270571987059 ◽  
Author(s):  
Nguyen Thi Phuong ◽  
Vu Hoai Nam ◽  
Nguyen Thoi Trung ◽  
Vu Minh Duc ◽  
Nguyen Van Loi ◽  
...  

Nonlinear buckling and postbuckling analysis of functionally graded graphene-reinforced composite (FG-GRC) laminated toroidal shell segments subjected to external pressure surrounded by elastic foundations and exposed to thermal environment are presented in this article. Governing equations for toroidal shell segments are based on the Donnell shell theory taking into account geometrical nonlinearity term in von Kármán sense with shell–foundation interaction modeled by Pasternak’s elastic foundation. Three-term solution form of deflection and stress function are chosen, and Galerkin method is applied to obtain the nonlinear load–deflection relation. Numerical investigations show the effects of graphene volume fraction, graphene distribution types, geometrical properties, elastic foundation, and thermal environments on the linear and nonlinear buckling and postbuckling behaviors of FG-GRC laminated toroidal shell segments.


Author(s):  
Hoang Van Tung

Buckling and postbuckling behaviors of nanocomposite cylindrical shells reinforced by single walled carbon nanotubes (SWCNTs), surrounded by an elastic medium, exposed to a thermal environment and subjected to uniform axial compression are investigated in this paper. Material properties of carbon nanotubes (CNTs) and isotropic matrix are assumed to be temperature dependent, and effective properties of nanocomposite are estimated by extended rule of mixture. The CNTs are embedded into matrix via uniform distribution (UD) or functionally graded (FG) distribution along the thickness direction. Governing equations are based on Donnell’s classical shell theory taking into account von Karman-Donnell nonlinear terms and interaction between the shell and surrounding elastic medium. Three-term form of deflection and stress function are assumed to satisfy simply supported boundary conditions and Galerkin method is applied to obtain load-deflection relation from which buckling and postbuckling behaviors are analyzed. Numerical examples are carried out to analyze the effects of CNT volume fraction and distribution types, geometrical ratios, environment temperature and surrounding elastic foundation on the buckling loads and postbuckling strength of CNTRC cylindrical shells.


2021 ◽  
pp. 089270572110386
Author(s):  
Le Thi Nhu Trang ◽  
Hoang Van Tung

In order to fill the evident lack of investigations on nonlinear response of nanocomposite curved panels under nonuniform temperature, this paper aims to analyze the nonlinear thermoelastic stability of cylindrical panels made of carbon nanotube (CNT) reinforced composite, rested on elastic foundations and subjected to sinusoidal-type in-plane temperature distribution. Reinforcement is carried out through functional rules of CNT volume fraction. An extended rule of mixture is adopted to estimate the effective properties of CNT-reinforced composite. Governing equations are derived based on classical shell theory accounting for von Kármán–Donnell nonlinearity, initial imperfection, interactive pressure from elastic foundation, and preexisting lateral pressure. In addition, the elasticity of in-plane constraints of boundary edges is included. Approximate analytical solutions are assumed to satisfy simply supported boundary conditions and Galerkin procedure is adopted to derive nonlinear closed-form relation between thermal load and deflection. Parametric studies are carried out and interesting remarks are obtained. The present study finds that, unlike case of uniform temperature rise, thermal instability of cylindrical panels under sinusoidal temperature distribution still occurs even though all edges are movable and load carrying capacity is the weakest for an intermediate value of CNT volume fraction. Under sinusoidal temperature distribution, the cylindrical panel may be deflected at the onset of loading and, for the most part, has no longer bifurcation-type buckling response. Furthermore, small values of preexisting external pressure have beneficial influences on the stability of nanocomposite cylindrical panels under nonuniform thermal loads.


Author(s):  
Kepin Kavathia ◽  
Manoj Settipalli ◽  
Samikkannu Raja

This paper presents a simulation-based study to investigate the damping properties of a novel piezocomposite, consisting of piezoelectric fiber and epoxy reinforced with randomly orientated double walled carbon nanotubes (DWCNT), termed as piezoelectric fiber nano reinforced composite (PFNRC). Authors have observed that the past research dealt with the effect of aligned single walled carbon nanotubes (CNT) on active damping of piezoelectric composite in extension mode (e13 and e33). It is known from the past research that DWCNT inclusions improve the passive damping of a composite. Therefore, the authors use DWCNT inclusions to study the active-passive damping of the piezoelectric composite, in this article. The random orientation of the DWCNT is considered to replicate the physical composite as it known that aligning CNTs in a single direction is not feasible due to fabrication constraints. A multistep homogenization method involving Method of Cells (MOC) is employed to obtain effective properties of PFNRC. A modified 3D-MOC is used to obtain the effective properties of epoxy matrix with DWCNT inclusions (DWCNT-epoxy), considering the effect of nano particle agglomeration. A 2D-MOC is then implemented with long fiber PZT as the active material and DWCNT-epoxy as the matrix. This procedure is followed for computing the effective material properties of extension (e33) as well as shear (e15) mode of PFNRC, when DWCNT inclusions are added into the epoxy matrix at different weight percentages. The constitutive equations are derived with the help of Maple and simulated in MATLAB. These results are used to compare the active-passive damping performance of the composites using a single degree of freedom damping model, employing Newmark’s numerical integration method. The active damping performance of the composites is evaluated by varying the displacement and velocity gains in a negative feedback system. The main focus of the study is to find the most efficient operating mode of the proposed composite for damping of structural vibrations.


Sign in / Sign up

Export Citation Format

Share Document