scholarly journals U-Pb zircon age of quartz diorite from Ben Giang intrusive complex in the Ben Giang area, Quang Nam Province

2015 ◽  
Vol 37 (2) ◽  
Author(s):  
Pham Trung Hieu ◽  
Huynh Trung
1986 ◽  
Vol 23 (1) ◽  
pp. 92-101 ◽  
Author(s):  
A. Turek ◽  
T. M. Carson ◽  
Patrick E. Smith ◽  
W. R. Van Schmus ◽  
W. Weber

The Archean Hayes River Group of the Island Lake greenstone belt (Superior Province, Sachigo Subprovince) comprises mafic to felsic metavolcanics, subvolcanics, and associated metasedimentary rocks. The Hayes River Group is intruded by granitoid rocks belonging to the early intrusive complex. One such pluton, the Bella Lake tonalite, is intrusive into the metabasalt of the Hayes River Group and has a U–Pb zircon age of 2886 ± 15 Ma. Similar intrusives of this complex, either internal or marginal to the greenstone belt, yield zircon ages of 2801 ± 8 Ma (Pipe Point tonalit) and 2768 ± 22 Ma (Linklater Island prophyry). This suggests that the early intrusive complex was emplaced over an ~ 120 Ma long interval by at least three separate intrusive episodes.Subsequent to the emplacement of the early intrusive complex, the isoclinally folded Hayes River Group and the early intrusive complex were uplifted, eroded, and followed by the unconformable deposition of the Island Lake Group, comprising fluvial to marine metasedimentary rocks. The stratigraphically lower part of the Island Lake Group is bracketed by the 2768 ± 22 Ma age of the Linklater Island porphyry and the 2729 ± 3 Ma age obtained for the late tectonic suite—the Pipe Point quartz diorite and feldspar porphyry. A feldspar quartz porphyry belonging to the post-tectonic intrusive rocks intrudes higher stratigraphic levels and has been dated at 2699 ± 4 Ma (Horseshoe Island quartz feldspar porphyry).


2017 ◽  
Author(s):  
Robert Cruze ◽  
◽  
Adam J.R. Kent ◽  
Robert B. Miller ◽  
Erin Shea

2020 ◽  
pp. 1-18
Author(s):  
Marcos Macchioli Grande ◽  
Pablo Alasino ◽  
Juan Dahlquist ◽  
Matías Morales Cámera ◽  
Carmen Galindo ◽  
...  

Abstract The formation of magmatic plumbing systems in the crust involves mass and heat transfer from deep to shallow levels. This process modifies the local geotherm and increases the thermal maturation of the crust, affecting the rheological state of the host rock and the composition of magma. Here, we report a petrological, geochemical, isotopic and geochronological integrated study of the Huaco (~354 Ma) and Sanagasta (~353 Ma, from a new U–Pb zircon age) units from the Carboniferous (Lower Mississippian) Huaco Intrusive Complex, NW Argentina. Similar values of ϵNd t and δ18O, of −3.2 ± 0.7 and +11.2‰ ± 0.3‰ (V-SMOW), respectively, for both units indicate that they shared the same source, as a result of mixing and later homogenization of a crustal component at the Late Devonian (~378 to 366 Ma), with metasomatized mantle-derived melts. Slightly higher contents of TiO2, FeO, MgO, CaO and rare earth elements for the Sanagasta unit in comparison with the Huaco unit suggest an increase in the degree of partial melting, which may have been caused by a higher temperature at the lower crust. In addition, the previous structural model of the Huaco Intrusive Complex points to an increase in thermal maturation in the upper crust, which drives a change in the emplacement style from tabular subhorizontal (Huaco) to vertically elongated (Sanagasta) bodies. Therefore, the evolution of the intrusive complex may reflect a generalized thermal maturation of the complete magmatic column, at both upper and lower crustal levels.


1999 ◽  
Vol 79 (3) ◽  
pp. 161-168 ◽  
Author(s):  
David Roberts ◽  
August L. Nissen ◽  
Nicholas Walker
Keyword(s):  

2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2019 ◽  
Vol 486 (4) ◽  
pp. 460-465
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
O. A. Bogatikov ◽  
V. V. Shchiptsov ◽  
...  

Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of large igneous province, related to the ascent of thermochemical mantle plume. Our geochemical and isotopic data evidence that ultramafites and alkaline rocks are joined by fractional crystallization, whereas carbonatitic magmas has independent origin. We suggest that origin of parental magmas of the Tiksheozero complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: 1) adiabatic melting of its inner part, which produced moderately-alkaline picrites, which fractional crystallization led to appearance of alkaline magmas, and 2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids  that arrived from underlying zone of adiabatic melting gave rise to carbonatite magmas.


Sign in / Sign up

Export Citation Format

Share Document