scholarly journals Recent geodynamic characteristics of the Southern Central coast and the relations with geological hazards

2019 ◽  
Vol 19 (3B) ◽  
pp. 125-136
Author(s):  
Bui Nhi Thanh ◽  
Nguyen Van Luong ◽  
Duong Quoc Hung ◽  
Nguyen Van Diep ◽  
Mai Duc Dong

Recent geodynamic characteristics of the Southern Central coast are analyzed on the basis of vertical and horizontal displacement velocities along active fault zones. The horizontal displacement velocity varies in magnitude from this fault system to another fault system, from 0.11–0.3 mm/year on the strike-slip - normal faults to 0–0.058 mm/year on the strike-slip faults and normal faults. The subsidence velocity changes complicatedly, different from one fault to another fault, depending on the mechanism of faults. On the continental shelf, most of the values of high subsidence’s velocity are related to the normal and strike-slip faults. Subsidence activities make the sea level increase highly, the subsidence activity makes the sea level rise at structures that fall close to the shore, reach about 0.2–0.48 mm/year in late Pleistocene - Holocene. The increase of sea level directly affects the intensity of erosion, flood, salinity and land loss events in coastal lowlands. Slippage of the seabed, earthquakes, volcanoes are geological hazards directly related to the geodynamic regime of the Southern Central coast.

2013 ◽  
Vol 53 (1) ◽  
pp. 255 ◽  
Author(s):  
Ernest Swierczek ◽  
Cui Zhen-dong ◽  
Simon Holford ◽  
Guillaume Backe ◽  
Rosalind King ◽  
...  

The Rosedale Fault System (RFS) bounds the northern margin of the Gippsland Basin on the Southern Australian Margin. It comprises an anastomosing system of large, Cretaceous-age normal faults that have been variably reactivated during mid Eocene-Recent inversion. A number of large oil and gas fields are located in anticlinal traps associated with the RFS, and in the future these fields may be considered as potential storage sites for captured CO2. Given the evidence for geologically recent fault reactivation along the RFS, it is thus necessary to evaluate the potential impacts of CO2 injection on fault stability. The analysis and interpretation of 3D seismic data allowed the authors to create a detailed structural model of the western section of the RFS. Petroleum geomechanical data indicates that the in-situ stress in this region is characterised by hybrid strike-slip to reverse faulting conditions where SHmax (40.5 MPa/km) > SV (21 MPa/km) ~ Shmin (20 MPa/km). The authors performed geomechanical modelling to assess the likelihood of fault reactivation assuming that both strike-slip and reverse-stress faulting regimes exist in the study area. The authors’ results indicate that the northwest to southeast and east-northeast to west-southwest trending segments of the RFS are presently at moderate and high risks of reactivation. The authors’ results highlight the importance of fault surface geometry in influencing fault reactivation potential, and show that detailed structural models of potential storage sites must be developed to aid risk assessments before injection of CO2.


2021 ◽  
Author(s):  
Daniel Wiemer ◽  
Steffen G. Hagemann ◽  
Nicolas Thébaud ◽  
Carlos Villanes

Abstract New regional- to vein-scale geologic mapping and structural analysis of the Carboniferous Pataz gold vein system (~10 Moz Au) reveal critical insights into the structural control on gold mineralization along the Eastern Andean Cordillera of northern Peru. The Pataz basement comprises continental volcanic arc and marginal to marine sedimentary rocks, which experienced intensive D2 deformation associated with Late Famatinian northeast to southwest compressive fold-and-thrust belt development. The D2 event produced an E-NE–dipping structural grain, including (1) tilted and F2 folded S1 foliations, (2) local F2 axial planar S2 foliations, and (3) subparallel D2 thrust faults. Intrusions, constituting the ca. 342 to 332 Ma (Mississippian) Pataz batholith, were emplaced along strike of the prominent Río Marañón fault and inherited the D2 basement structures, as evident in the orientation of suprasolidus magmatic flow zones and intrusive contacts within the batholith. Progressive horst-and-graben development affecting the volcanic carapace of the Pataz batholith records late syn- to postmagmatic uplift and transition into a NW-SE–extensional regime. We show that the E-NE–dipping, batholith-hosted gold vein system formed through synchronous activation of two geometric fault-fill vein types, following (1) the moderately E-NE–dipping D2 basement-inherited competency contrasts within the batholith and (2) shallow NE-dipping Andersonian footwall thrusts, during NE-directed shortening (D3a). Both geometric vein types display an early paragenetic stage (I) of quartz-pyrite, progressing texturally from hydraulic breccia into crack-seal laminated shear veins. A second (II), undeformed quartz-pyrite-sphalerite-galena paragenetic stage is observed to fill previously established dilational sites adjacent to newly formed D3b normal faults, which likely formed during regional NW-SE–extensional horst-graben development. Kinematics and relative timing indicate that, upon batholith solidification, D3a transpressional dextral strike-slip ruptures along the Río Marañón fault superimposed a lower-order Riedel-type fault system. Fluid-assisted fault activation preferentially impinged on the D2 basement-inherited competency contrasts within the batholith. Subsequent transition into a transtensional regime led to the D3b normal faulting, providing a feeder system for stage II fluid influx. The tectonic switch may be explained either by increasing tensile strain accommodation upon progressive strike-slip movement within a regional dilational jog or by larger-scale crustal relaxation of the late Gondwana margin upon final Pangea assembly. Our new structural model for the Pataz vein system evolution highlights the importance of basement structural inheritance in controlling the localization of gold mineralization along polycyclic supercontinent margins. We provide valuable insights for exploration targeting of complex vein arrays within rheologically heterogeneous host rocks.


2021 ◽  
Author(s):  
Nemanja Krstekanic ◽  
Liviu Matenco ◽  
Uros Stojadinovic ◽  
Ernst Willingshofer ◽  
Marinko Toljić ◽  
...  

<p>The Carpatho-Balkanides of south-eastern Europe is a double 180° curved orogenic system. It is comprised of a foreland-convex orocline, situated in the north and east and a backarc-convex orocline situated in the south and west. The southern orocline of the Carpatho-Balkanides orogen formed during the Cretaceous closure of the Alpine Tethys Ocean and collision of the Dacia mega-unit with the Moesian Platform. Following the main orogen-building processes, the Carpathians subduction and Miocene slab retreat in the West and East Carpathians have driven the formation of the backarc-convex oroclinal bending in the south and west. The orocline formed during clockwise rotation of the Dacia mega-unit and coeval docking against the Moesian indenter. This oroclinal bending was associated with a Paleocene-Eocene orogen-parallel extension that exhumed the Danubian nappes of the South Carpathians and with a large late Oligocene – middle Miocene Circum-Moesian fault system that affected the orogenic system surrounding the Moesian Platform along its southern, western and northern margins. This fault system is composed of various segments that have different and contrasting types of kinematics, which often formed coevally, indicating a large degree of strain partitioning during oroclinal bending. It includes the curved Cerna and Timok faults that cumulate up to 100 km of dextral offset, the lower offset Sokobanja-Zvonce and Rtanj-Pirot dextral strike-slip faults, associated with orogen parallel extension that controls numerous intra-montane basins and thrusting of the western Balkans units over the Moesian Platform. We have performed a field structural study in order to understand the mechanisms of deformation transfer and strain partitioning around the Moesian indenter during oroclinal bending by focusing on kinematics and geometry of large-scale faults within the Circum-Moesian fault system.</p><p>Our structural analysis shows that the major strike-slip faults are composed of multi-strand geometries associated with significant strain partitioning within tens to hundreds of metres wide deformation zones. Kinematics of the Circum-Moesian fault system changes from transtensional in the north, where the formation of numerous basins is controlled by the Cerna or Timok faults, to strike-slip and transpression in the south, where transcurrent offsets are gradually transferred to thrusting in the Balkanides. The characteristic feature of the whole system is splaying of major faults to facilitate movements around the Moesian indenter. Splaying towards the east connects the Circum-Moesian fault system with deformation observed in the Getic Depression in front of the South Carpathians, while in the south-west the Sokobanja-Zvonce and Rtanj-Pirot faults splay off the Timok Fault. These two faults are connected by coeval E-W oriented normal faults that control several intra-montane basins and accommodate orogen-parallel extension. We infer that all these deformations are driven by the roll-back of the Carpathians slab that exerts a northward pull on the upper Dacia plate in the Serbian Carpathians. However, the variability in deformation styles is controlled by geometry of the Moesian indenter and the distance to Moesia, as the rotation and northward displacements increase gradually to the north and west.</p>


The analysis of the distribution of thrusts, normal faults and strike-slip faults of various ages has allowed us to determine the character of lithospheric block displacements in the Soviet Far East. The early Mesozoic, late Mesozoic and Cainozoic kinematics were each essentially different. The Early Mesozoic Dzhagdinsk fault system appeared as a result of the collision of the Bureinsk-Khankaisk microcontinent with the Siberian continent. The largest faults of the system are neither longstanding nor deep but were formed during the latest stage of the structural evolution. The multistage formation of the faults of the Dzhagdinsk system is conditioned by its position at the margin of the continent. The late Mesozoic faults are mainly strike-slip faults caused by the subduction of the oceanic crust at an acute angle with respect to the strike of the active continental margin. The Cainozoic faults were formed under compression on the boundary between the Siberian platform and the Bureinsk massif, but under tension in the east of the region.


2011 ◽  
Vol 1 (4) ◽  
pp. 286-304 ◽  
Author(s):  
A. Rastbood ◽  
B. Voosoghi

Extension and slip rate partitioning in NW Iran constrained by GPS measurementsConvergence of 22±2 mm yr-1 between the northward motion of the Arabian Plate relative to Eurasia at N8° ±5° E is accommodated by a combination of thrust and strike-slip faults in different parts of Iran. Dislocation modeling is used to examine the GPS data for this part of the Alpine-Himalayan mountain belt with more concentration in NW Iran. First, the vectors due to known Arabia-Eurasia rotation are reproduced by introducing structures that approximate the large-scale tectonics of the Middle East. Observed features of the smaller scale fault system are then progressively included in the model. Slip rate amplitudes and directions adjusted to fit available GPS data. Geological evidences show strike-slip and reverse-slip faulting in NW Iran, but GPS data show normal faults in this region too. By slip partitioning we propose four locations for normal faults based on extensions observed by GPS data. Slip rate values were estimated between 2 ~ 5 mm/yr for proposed normal faults. Our modeling results prove that the NW Iran is not only affected by Arabia-Eurasia collision but also contributes in the subduction motion of the South Caspian and Kura basins basement beneath the Apsheron-Balkhan sill and the Great Caucasus respectively.


2020 ◽  
Author(s):  
Jakub Fedorik ◽  
Abdulkader Afifi

<p>The Dead Sea Transform is an active left lateral, strike-slip plate boundary. The Gulf of Aqaba corresponds to its southern segment, where the largest amount of opening is observed. The gulf itself is deformed by a set of en echelon faults which are bounded by normal faults. These en echelon faults show structural styles of Riedel shears which are typically observed in strike-slip tectonics. However, their orientation is the opposite to the one observed in well described models or natural cases. In this study, we compare a compiled dataset to analogue models which simulate the displacement in various strike-slip systems. This comparison to a sandbox model highlights the importance of the tectonic load in a strike-slip fault system. The model is composed of two base plates with only one straight velocity discontinuity. X-Ray Computed Tomography is used as a technique to carry out a 4D analysis of internal fault structures of the model. The 10°-transtensional model generates a set of Riedel shear faults, which merge during the later stages of deformation. The 30°-transtensional tectonic load shows two major steep bounding faults with a dip-slip component and a set of en echelon faults - opposite Riedel shears in between them. A higher amount of transtension rotates the classic Riedel shear faults to the opposite position. This fault pattern is very similar to the one observed in the Gulf of Aqaba, where the internal fault system is composed of opposite Riedel shears bounded by normal faults. These observations can increase the understanding of the structural styles seen in the Gulf of Aqaba. Moreover, our study describes a new strike-slip fault system.</p>


2014 ◽  
Vol 185 (3) ◽  
pp. 171-189 ◽  
Author(s):  
Patrick Rolin ◽  
Didier Marquer ◽  
Charles Cartannaz ◽  
Philippe Rossi

AbstractThe Variscan continental collision induced the development of large crustal melting in the western French Massif Central, accompanied by emplacement and deformation of syn- to post-tectonic granites spatially related to normal and strike slip faulting. Our study focuses on the regional deformation and shear zone patterns in the Millevaches massif, one of the largest magmatic area of the French Massif Central. In this massif, the syn-tectonic intrusions are related i) to the dextral wrenching along the Treignac-Pradines shear zones and the Creuse faults system, and ii) to the coeval extension along the N000°–N020° normal faults on the western edge of the Millevaches massif (Bourganeuf and Argentat faults). The analysis of deformation and kinematics correlated to new datations of granites allow us to propose a pull-apart model to explain the tectono-magmatic evolution of this part of the Variscan belt from 350 Ma to 325 Ma. At that time, these granites intruded a “pull-apart” system bounded by two major N140°–160° dextral strike-slip zones operating in the middle continental crust during a bulk N020° regional shortening.From 325 Ma to 320 Ma, a clockwise rotation of the regional shortening axis was responsible for the late reactivation of the N020° eastern Millevaches tectonic border as a dextral fault system (Felletin-Ambrugeat fault system). This NE-SW shortening displaced the N140°–160° Creuse fault system and induced a reverse motion along the northern border of the Millevaches massif (St-Michel-de-Veisse fault). This Visean tectono-magmatic event induced the late exhumation of the Millevaches massif with respect to surrounding units and favoured the widespread granite emplacement in this part of the Variscan belt.


2020 ◽  
Vol 12 (1) ◽  
pp. 851-865
Author(s):  
Sukonmeth Jitmahantakul ◽  
Piyaphong Chenrai ◽  
Pitsanupong Kanjanapayont ◽  
Waruntorn Kanitpanyacharoen

AbstractA well-developed multi-tier polygonal fault system is located in the Great South Basin offshore New Zealand’s South Island. The system has been characterised using a high-quality three-dimensional seismic survey tied to available exploration boreholes using regional two-dimensional seismic data. In this study area, two polygonal fault intervals are identified and analysed, Tier 1 and Tier 2. Tier 1 coincides with the Tucker Cove Formation (Late Eocene) with small polygonal faults. Tier 2 is restricted to the Paleocene-to-Late Eocene interval with a great number of large faults. In map view, polygonal fault cells are outlined by a series of conjugate pairs of normal faults. The polygonal faults are demonstrated to be controlled by depositional facies, specifically offshore bathyal deposits characterised by fine-grained clays, marls and muds. Fault throw analysis is used to understand the propagation history of the polygonal faults in this area. Tier 1 and Tier 2 initiate at about Late Eocene and Early Eocene, respectively, based on their maximum fault throws. A set of three-dimensional fault throw images within Tier 2 shows that maximum fault throws of the inner polygonal fault cell occurs at the same age, while the outer polygonal fault cell exhibits maximum fault throws at shallower levels of different ages. The polygonal fault systems are believed to be related to the dewatering of sedimentary formation during the diagenesis process. Interpretation of the polygonal fault in this area is useful in assessing the migration pathway and seal ability of the Eocene mudstone sequence in the Great South Basin.


Sign in / Sign up

Export Citation Format

Share Document