Quantifying fault reactivation risk in the western Gippsland Basin using geomechanical modelling

2013 ◽  
Vol 53 (1) ◽  
pp. 255 ◽  
Author(s):  
Ernest Swierczek ◽  
Cui Zhen-dong ◽  
Simon Holford ◽  
Guillaume Backe ◽  
Rosalind King ◽  
...  

The Rosedale Fault System (RFS) bounds the northern margin of the Gippsland Basin on the Southern Australian Margin. It comprises an anastomosing system of large, Cretaceous-age normal faults that have been variably reactivated during mid Eocene-Recent inversion. A number of large oil and gas fields are located in anticlinal traps associated with the RFS, and in the future these fields may be considered as potential storage sites for captured CO2. Given the evidence for geologically recent fault reactivation along the RFS, it is thus necessary to evaluate the potential impacts of CO2 injection on fault stability. The analysis and interpretation of 3D seismic data allowed the authors to create a detailed structural model of the western section of the RFS. Petroleum geomechanical data indicates that the in-situ stress in this region is characterised by hybrid strike-slip to reverse faulting conditions where SHmax (40.5 MPa/km) > SV (21 MPa/km) ~ Shmin (20 MPa/km). The authors performed geomechanical modelling to assess the likelihood of fault reactivation assuming that both strike-slip and reverse-stress faulting regimes exist in the study area. The authors’ results indicate that the northwest to southeast and east-northeast to west-southwest trending segments of the RFS are presently at moderate and high risks of reactivation. The authors’ results highlight the importance of fault surface geometry in influencing fault reactivation potential, and show that detailed structural models of potential storage sites must be developed to aid risk assessments before injection of CO2.

2021 ◽  
Author(s):  
Daniel Wiemer ◽  
Steffen G. Hagemann ◽  
Nicolas Thébaud ◽  
Carlos Villanes

Abstract New regional- to vein-scale geologic mapping and structural analysis of the Carboniferous Pataz gold vein system (~10 Moz Au) reveal critical insights into the structural control on gold mineralization along the Eastern Andean Cordillera of northern Peru. The Pataz basement comprises continental volcanic arc and marginal to marine sedimentary rocks, which experienced intensive D2 deformation associated with Late Famatinian northeast to southwest compressive fold-and-thrust belt development. The D2 event produced an E-NE–dipping structural grain, including (1) tilted and F2 folded S1 foliations, (2) local F2 axial planar S2 foliations, and (3) subparallel D2 thrust faults. Intrusions, constituting the ca. 342 to 332 Ma (Mississippian) Pataz batholith, were emplaced along strike of the prominent Río Marañón fault and inherited the D2 basement structures, as evident in the orientation of suprasolidus magmatic flow zones and intrusive contacts within the batholith. Progressive horst-and-graben development affecting the volcanic carapace of the Pataz batholith records late syn- to postmagmatic uplift and transition into a NW-SE–extensional regime. We show that the E-NE–dipping, batholith-hosted gold vein system formed through synchronous activation of two geometric fault-fill vein types, following (1) the moderately E-NE–dipping D2 basement-inherited competency contrasts within the batholith and (2) shallow NE-dipping Andersonian footwall thrusts, during NE-directed shortening (D3a). Both geometric vein types display an early paragenetic stage (I) of quartz-pyrite, progressing texturally from hydraulic breccia into crack-seal laminated shear veins. A second (II), undeformed quartz-pyrite-sphalerite-galena paragenetic stage is observed to fill previously established dilational sites adjacent to newly formed D3b normal faults, which likely formed during regional NW-SE–extensional horst-graben development. Kinematics and relative timing indicate that, upon batholith solidification, D3a transpressional dextral strike-slip ruptures along the Río Marañón fault superimposed a lower-order Riedel-type fault system. Fluid-assisted fault activation preferentially impinged on the D2 basement-inherited competency contrasts within the batholith. Subsequent transition into a transtensional regime led to the D3b normal faulting, providing a feeder system for stage II fluid influx. The tectonic switch may be explained either by increasing tensile strain accommodation upon progressive strike-slip movement within a regional dilational jog or by larger-scale crustal relaxation of the late Gondwana margin upon final Pangea assembly. Our new structural model for the Pataz vein system evolution highlights the importance of basement structural inheritance in controlling the localization of gold mineralization along polycyclic supercontinent margins. We provide valuable insights for exploration targeting of complex vein arrays within rheologically heterogeneous host rocks.


2021 ◽  
Author(s):  
Vincent Roche ◽  
Giovanni Camanni ◽  
Conrad Childs ◽  
Tom Manzocchi ◽  
John Walsh ◽  
...  

<p>Normal faults are often complex three-dimensional structures comprising multiple sub-parallel segments separated by intact or breached relay zones. In this study we outline geometrical characterisations capturing this 3D complexity and providing a semi-quantitative basis for the comparison of faults and for defining the factors controlling their geometrical evolution. Relay zones are classified according to whether they step in the strike or dip direction and whether the relay zone-bounding fault segments are unconnected in 3D or bifurcate from a single surface. Complex fault surface geometry is then described in terms of the relative numbers of different types of relay zones to allow comparison of fault geometry between different faults and different geological settings. A large database of 87 fault arrays compiled primarily from mapping 3D seismic reflection surveys and classified according to this scheme, reveals the diversity of 3D fault geometry. Analysis demonstrates that mapped fault geometries depend on geological controls, primarily the heterogeneity of the faulted sequence and the presence of a pre-existing structure. For example, relay zones with an upward bifurcating geometry are prevalent in faults that reactivate deeper structures, whereas the formation of laterally bifurcating relays is promoted by heterogeneous mechanical stratigraphy. In addition, mapped segmentation depends on resolution limits and biases in fault mapping from seismic data. In particular, the results suggest that the proportion of bifurcating relay zones increases as data resolution increases. Overall, where a significant number of relay zones are mapped on a single fault, a wide variety of relay zone geometries occurs, demonstrating that individual faults can comprise segments that are both bifurcating and unconnected in three dimensions. Models for the geometrical evolution of fault arrays must therefore account for the full range of relay zone geometries that appears to be a characteristic of all faults.</p>


2021 ◽  
Author(s):  
Nemanja Krstekanic ◽  
Liviu Matenco ◽  
Uros Stojadinovic ◽  
Ernst Willingshofer ◽  
Marinko Toljić ◽  
...  

<p>The Carpatho-Balkanides of south-eastern Europe is a double 180° curved orogenic system. It is comprised of a foreland-convex orocline, situated in the north and east and a backarc-convex orocline situated in the south and west. The southern orocline of the Carpatho-Balkanides orogen formed during the Cretaceous closure of the Alpine Tethys Ocean and collision of the Dacia mega-unit with the Moesian Platform. Following the main orogen-building processes, the Carpathians subduction and Miocene slab retreat in the West and East Carpathians have driven the formation of the backarc-convex oroclinal bending in the south and west. The orocline formed during clockwise rotation of the Dacia mega-unit and coeval docking against the Moesian indenter. This oroclinal bending was associated with a Paleocene-Eocene orogen-parallel extension that exhumed the Danubian nappes of the South Carpathians and with a large late Oligocene – middle Miocene Circum-Moesian fault system that affected the orogenic system surrounding the Moesian Platform along its southern, western and northern margins. This fault system is composed of various segments that have different and contrasting types of kinematics, which often formed coevally, indicating a large degree of strain partitioning during oroclinal bending. It includes the curved Cerna and Timok faults that cumulate up to 100 km of dextral offset, the lower offset Sokobanja-Zvonce and Rtanj-Pirot dextral strike-slip faults, associated with orogen parallel extension that controls numerous intra-montane basins and thrusting of the western Balkans units over the Moesian Platform. We have performed a field structural study in order to understand the mechanisms of deformation transfer and strain partitioning around the Moesian indenter during oroclinal bending by focusing on kinematics and geometry of large-scale faults within the Circum-Moesian fault system.</p><p>Our structural analysis shows that the major strike-slip faults are composed of multi-strand geometries associated with significant strain partitioning within tens to hundreds of metres wide deformation zones. Kinematics of the Circum-Moesian fault system changes from transtensional in the north, where the formation of numerous basins is controlled by the Cerna or Timok faults, to strike-slip and transpression in the south, where transcurrent offsets are gradually transferred to thrusting in the Balkanides. The characteristic feature of the whole system is splaying of major faults to facilitate movements around the Moesian indenter. Splaying towards the east connects the Circum-Moesian fault system with deformation observed in the Getic Depression in front of the South Carpathians, while in the south-west the Sokobanja-Zvonce and Rtanj-Pirot faults splay off the Timok Fault. These two faults are connected by coeval E-W oriented normal faults that control several intra-montane basins and accommodate orogen-parallel extension. We infer that all these deformations are driven by the roll-back of the Carpathians slab that exerts a northward pull on the upper Dacia plate in the Serbian Carpathians. However, the variability in deformation styles is controlled by geometry of the Moesian indenter and the distance to Moesia, as the rotation and northward displacements increase gradually to the north and west.</p>


The analysis of the distribution of thrusts, normal faults and strike-slip faults of various ages has allowed us to determine the character of lithospheric block displacements in the Soviet Far East. The early Mesozoic, late Mesozoic and Cainozoic kinematics were each essentially different. The Early Mesozoic Dzhagdinsk fault system appeared as a result of the collision of the Bureinsk-Khankaisk microcontinent with the Siberian continent. The largest faults of the system are neither longstanding nor deep but were formed during the latest stage of the structural evolution. The multistage formation of the faults of the Dzhagdinsk system is conditioned by its position at the margin of the continent. The late Mesozoic faults are mainly strike-slip faults caused by the subduction of the oceanic crust at an acute angle with respect to the strike of the active continental margin. The Cainozoic faults were formed under compression on the boundary between the Siberian platform and the Bureinsk massif, but under tension in the east of the region.


2021 ◽  
Author(s):  
Miriana Chinello ◽  
Michele Fondriest ◽  
Giulio Di Toro

<p>The Italian Central Apennines are one of the most seismically active areas in the Mediterranean (e.g., L’Aquila 2009, Mw 6.3 earthquake). The mainshocks and the aftershocks of these earthquake sequences propagate and often nucleate in fault zones cutting km-thick limestones and dolostones formations. An impressive feature of these faults is the presence, at their footwall, of few meters to hundreds of meters thick damage zones. However, the mechanism of formation of these damage zones and their role during (1) individual seismic ruptures (e.g., rupture arrest), (2) seismic sequences (e.g., aftershock evolution) and (3) seismic cycle (e.g., long term fault zone healing) are unknown. This limitation is also due to the lack of knowledge regarding the distribution, along strike and with depth, of damage with wall rock lithology, geometrical characteristics (fault length, inherited structures, etc.) and kinematic properties (cumulative displacement, strain rate, etc.) of the associated main faults.</p><p>Previous high-resolution field structural surveys were performed on the Vado di Corno Fault Zone, a segment of the ca. 20 km long Campo Imperatore normal fault system, which accommodated ~ 1500 m of vertical displacement (Fondriest et al., 2020). The damage zone was up to 400 m thick and dominated by intensely fractured (1-2 cm spaced joints) dolomitized limestones with the thickest volumes at fault oversteps and where the fault cuts through an older thrust zone. Here we describe two minor faults located in the same area (Central Apennines), but with shorter length along strike. They both strike NNW-SSE and accommodated a vertical displacement of ~300 m.</p><p>The Subequana Valley Fault is about 9 km long and consists of multiple segments disposed in an en-echelon array. The fault juxtaposes pelagic limestones at the footwall and quaternary deposits at the hanging wall. The damage zone is < 25 m  thick  and comprises fractured (1-2 cm spaced joints) limestones beds with decreasing fracture intensity moving away from the master fault. However, the damage zone thickness increases up to ∼100 m in proximity of subsidiary faults striking NNE-SSW. The latter could be reactivated inherited structures.</p><p>The Monte Capo di Serre Fault is about 8 km long and characterized by a sharp ultra-polished master fault surface which cuts locally dolomitized Jurassic platform limestones. The damage zone is up to 120 m thick and cut by 10-20 cm spaced joints, but it reaches an higher fracture intensity where is cut by subsidiary, possibly inherited, faults striking NNE-SSW.</p><p>Based on these preliminary observations, faults with similar displacement show comparable damage zone thicknesses. The most relevant damage zone thickness variations are related to geometrical complexities rather than changes in lithology (platform vs pelagic carbonates).  In particular, the largest values of damage zone thickness and fracture intensity occur at fault overstep or are associated to inherited structures. The latter, by acting as strong or weak barriers (sensu Das and Aki, 1977) during the propagation of seismic ruptures, have a key role in the formation of damage zones and the growth of normal faults.</p>


Solid Earth ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 345-361
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. The influence of strain distribution inheritance within fault systems on repeated fault reactivation is far less understood than the process of repeated fault reactivation itself. By evaluating cross sections through a new 3D geological model, we demonstrate contrasts in strain distribution between different fault segments of the same fault system during its reverse reactivation and subsequent normal reactivation. The study object is the Roer Valley graben (RVG), a middle Mesozoic rift basin in western Europe that is bounded by large border fault systems. These border fault systems were reversely reactivated under Late Cretaceous compression (inversion) and reactivated as normal faults under Cenozoic extension. A careful evaluation of the new geological model of the western RVG border fault system – the Feldbiss fault system (FFS) – reveals the presence of two structural domains in the FFS with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow (<3 km) localized faulting, while the northern is characterized by wide (>10 km) distributed faulting. The total normal and reverse throws in the two domains of the FFS were estimated to be similar during both tectonic phases. This shows that each domain accommodated a similar amount of compressional and extensional deformation but persistently distributed it differently. The faults in both structural domains of the FFS strike NW–SE, but the change in geometry between them takes place across the oblique WNW–ESE striking Grote Brogel fault. Also in other parts of the Roer Valley graben, WNW–ESE-striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. At the contact between both structural domains, a major NNE–SSW-striking latest Carboniferous strike-slip fault is present, referred to as the Gruitrode Lineament. Across another latest Carboniferous strike-slip fault zone (Donderslag Lineament) nearby, changes in the geometry of Mesozoic fault populations were also noted. These observations demonstrate that Late Cretaceous and Cenozoic inherited changes in fault geometries as well as strain distributions were likely caused by the presence of pre-existing lineaments in the basement.


2021 ◽  
Author(s):  
Michael Rudolf ◽  
Joscha Podlesny ◽  
Esther Heckenbach ◽  
Matthias Rosenau ◽  
Anne Glerum ◽  
...  

&lt;p&gt;The release of elastic energy along an active fault is accommodated by a wide range of slip modes. It ranges from long-term slow slip events (SSEs) and creep to short-term tremors and earthquakes. They vary not only in their characteristic duration but also in their magnitude, spatial exten&lt;span&gt;&lt;span&gt;t&lt;/span&gt;&lt;/span&gt; and slip velocities. The exact relationship is unclear, as in some regions many slip modes occur simultaneously (e.g. Tohoku-Oki) and in others certain slip modes are completely absent (e.g. Cascadia).&lt;/p&gt;&lt;p&gt;One of the driving factors in the generation of this large variety of slip modes is the interplay of fault heterogeneity and geometrical complexity of the fault system. We test various settings in terms of fault heterogeneity and geometrical complexity with a scaled physical model. The experimental results are then validated and benchmarked through multi-scale numerical simulations. We describe &lt;span&gt;&lt;span&gt;the&lt;/span&gt;&lt;/span&gt; system using &lt;span&gt;&lt;span&gt;a&lt;/span&gt;&lt;/span&gt; rate-and-state frictional framework and introduce on-fault heterogeneity with variable frictional properties. All properties are the same for analogue and numerical simulation as far as they can be determined or realized experimentally (a-b, v&lt;sub&gt;load&lt;/sub&gt;, S&lt;sub&gt;hmax&lt;/sub&gt;, S&lt;sub&gt;hmin&lt;/sub&gt;, etc...). As analogue material we use segmented, decimetre sized neoprene foam blocks in multiple configurations (e.g. biaxial shear at forces &lt;1 kN) to simulate the elastic upper crust. The contact surfaces are spray-painted with acrylic paint to generate velocity weakening characteristics in between the blocks which is similar to the frictional behaviour of natural faults. We add heterogeneity to the fault surface by varying the fault area that is velocity weakening using grease. Geometrical complexity is implemented using conjugated or parallel sets of additional faults with the same characteristics.&lt;/p&gt;&lt;p&gt;We are able to reliably generate frequent stick-slip events of variable size and recurrence intervals. The slip characteristics, such as slip distribution, are in good agreement with analytical solutions of fault slip in elastic media. In a geometrically simple strike-slip model the recurrence behaviour and magnitude follows straightforward scaling relations in accordance with existing studies. If geometrical complexity is added to the model we observe clustering and variable recurrence that differ from the simpler geometry. Additionally, we are going to give an outlook on the interaction behaviour of multiple faults in dependence of their geometric configuration and the generation of power-law type magnitude scaling relations.&lt;/p&gt;


2021 ◽  
Author(s):  
Willemijn S.M.T. van Kooten ◽  
Edward R. Sobel ◽  
Cecilia del Papa ◽  
Patricio Payrola ◽  
Alejandro Bande ◽  
...  

&lt;p&gt;The Cretaceous period in NW Argentina is dominated by the formation of the Salta rift basin, an intracontinental rift basin with multiple branches extending from the central Salta-Jujuy High. One of these branches is the ENE-WSW striking Lomas de Olmedo sub-basin, which hosts up to 5 km of syn- and post-rift deposits of the Salta Group, accommodated by substantial throw along SW-NE striking normal faults and subsequent thermal subsidence during the Cretaceous-Paleogene. Early compressive movement in the Eastern Cordillera led to the formation of a foreland basin setting that was further dissected in the Neogene by the uplift of basement-cored ranges. As a consequence, the northwestern part of the Lomas de Olmedo sub-basin was disconnected from the Andean foreland and local depocenters such as the Cianzo basin were formed, whereas the eastern sub-basin area is still part of the Andean foreland. Thus, the majority of the Salta Group to the east is located in the subsurface and has been extensively explored for petroleum, while in northwestern part of the sub-basin, the Salta Group is increasingly deformed and is fully exposed in the km-scale Cianzo syncline of the Hornocal ranges. The SW-NE striking Hornocal fault delimits the Cianzo basin to the south and the Cianzo syncline to the north. During the Cretaceous, it formed the northern margin of the Lomas de Olmedo sub-basin, which is indicated by an increasing thickness of the syn-rift deposits towards the Hornocal fault, as well as a lack of syn-rift deposits on the footwall block. Structural mapping and unpublished apatite fission track (AFT) data show that the Hornocal normal fault was reactivated and inverted during the Miocene. Although structural and sedimentary features of the Cianzo basin infill provide information about the relative timing of fault activity, there is a lack of low-temperature thermochronology. Herein, we aim to constrain the exhumation of the Lomas de Olmedo sub-basin during the Cretaceous rifting phase, as well as the onset and magnitude of fault reactivation in the Miocene. We collected 74 samples for low-temperature thermochronology along two major NW-SE transects in the Cianzo basin and adjacent areas. Of these samples, 59 have been analyzed using apatite and/or zircon (U-Th-Sm)/He thermochronology (AHe, ZHe). Furthermore, 49 samples have been prepared for AFT analysis. The ages are incorporated in thermo-kinematic modelling using Pecube in order to test the robustness of uplift and exhumation scenarios. On the hanging wall block of the N-S striking east-vergent Cianzo thrust north of the Hornocal fault, Jurassic ZHe ages are attributed to pre-Salta Group exhumation. However, associated thrusts to the south show ZHe ages as young as Eocene-Oligocene, which might indicate early post-rift activity along those thrusts. AHe data from the Cianzo syncline show a direct age-elevation relationship with Late Miocene-Pliocene cooling ages, indicating the onset of rapid exhumation along the Hornocal fault in the Miocene. This is consistent with regional data and suggests that pre-existing extensional structures were reactivated during Late Miocene-Pliocene compressive movement within this part of the Central Andes.&lt;/p&gt;


2016 ◽  
Vol 153 (5-6) ◽  
pp. 1166-1191 ◽  
Author(s):  
KENN-MING YANG ◽  
RUEY-JUIN RAU ◽  
HAO-YUN CHANG ◽  
CHING-YUN HSIEH ◽  
HSIN-HSIU TING ◽  
...  

AbstractIn the foreland area of western Taiwan, some of the pre-orogenic basement-involved normal faults were reactivated during the subsequent compressional tectonics. The main purpose of this paper is to investigate the role played by the pre-existing normal faults in the recent tectonics of western Taiwan. In NW Taiwan, reactivated normal faults with a strike-slip component have developed by linkage of reactivated single pre-existing normal faults in the foreland basin and acted as transverse structures for low-angle thrusts in the outer fold-and-thrust belt. In the later stage of their development, the transverse structures were thrusted and appear underneath the low-angle thrusts or became tear faults in the inner fold-and-thrust belt. In SW Taiwan, where the foreland basin is lacking normal fault reactivation, the pre-existing normal faults passively acted as ramp for the low-angle thrusts in the inner fold-and-thrust belt. Some of the active faults in western Taiwan may also be related to reactivated normal faults with right-lateral slip component. Some main earthquake shocks related to either strike-slip or thrust fault plane solution occurred on reactivated normal faults, implying a relationship between the pre-existing normal fault and the triggering of the recent major earthquakes. Along-strike contrast in structural style of normal fault reactivation gives rise to different characteristics of the deformation front for different parts of the foreland area in western Taiwan. Variations in the degree of normal fault reactivation also provide some insights into the way the crust embedding the pre-existing normal faults deformed in response to orogenic contraction.


2011 ◽  
Vol 1 (4) ◽  
pp. 286-304 ◽  
Author(s):  
A. Rastbood ◽  
B. Voosoghi

Extension and slip rate partitioning in NW Iran constrained by GPS measurementsConvergence of 22±2 mm yr-1 between the northward motion of the Arabian Plate relative to Eurasia at N8° ±5° E is accommodated by a combination of thrust and strike-slip faults in different parts of Iran. Dislocation modeling is used to examine the GPS data for this part of the Alpine-Himalayan mountain belt with more concentration in NW Iran. First, the vectors due to known Arabia-Eurasia rotation are reproduced by introducing structures that approximate the large-scale tectonics of the Middle East. Observed features of the smaller scale fault system are then progressively included in the model. Slip rate amplitudes and directions adjusted to fit available GPS data. Geological evidences show strike-slip and reverse-slip faulting in NW Iran, but GPS data show normal faults in this region too. By slip partitioning we propose four locations for normal faults based on extensions observed by GPS data. Slip rate values were estimated between 2 ~ 5 mm/yr for proposed normal faults. Our modeling results prove that the NW Iran is not only affected by Arabia-Eurasia collision but also contributes in the subduction motion of the South Caspian and Kura basins basement beneath the Apsheron-Balkhan sill and the Great Caucasus respectively.


Sign in / Sign up

Export Citation Format

Share Document