Effect of reflux ratio on COD and nitrogen removals from coke plant wastewaters

2010 ◽  
Vol 61 (12) ◽  
pp. 3017-3025 ◽  
Author(s):  
X. L. Shi ◽  
X. B. Hu ◽  
Z. Wang ◽  
L. L. Ding ◽  
H. Q. Ren

A laboratory-scale anaerobic-anoxic-aerobic-moving bed biofilm reactor (A1-A2-O-MBBR) system was undertaken to treat coke plant wastewaters from two different factories (wastewater A and B). Wastewater B had higher BOD5/COD ratio and COD/TN ratio than wastewater A. The effects of reflux ratios on COD, TN and NH3-N removals were studied. Results indicated that, with the reflux ratio increased from 2 to 5, COD removals of wastewater A and wastewater B increased from 57.4% to 72.6% and 78.2% to 88.6%, respectively. Meanwhile, TN removals were also increased accompanying reflux ratio rise, from 53.1% to 74.4% for wastewater A and 64.2% to 83.5% for wastewater B. At the same reflux ratio, compared with wastewater A, higher COD and TN removal efficiencies were observed in wastewater B, which had higher BOD5/COD and COD/TN ratio. Reflux ratio had no significant influence on NH3-N removal; 99.0% of the overall NH3-N removal efficiency was achieved by the system for both coke plant wastewaters at any tested reflux ratio. MBBR was effective in NH3-N removal, and about 95% of the NH3-N was removed in the MBBR.

2017 ◽  
Vol 77 (4) ◽  
pp. 1027-1034 ◽  
Author(s):  
Yan-Xiang Cui ◽  
Di Wu ◽  
Hamish R. Mackey ◽  
Ho-Kwong Chui ◽  
Guang-Hao Chen

Abstract Sulfur-oxidizing autotrophic denitrification (SO-AD) was investigated in a laboratory-scale moving-bed biofilm reactor (MBBR) at a sewage temperature of 22 °C. A synthetic wastewater with nitrate, sulfide and thiosulfate was fed into the MBBR. After 20 days' acclimation, the reduced sulfur compounds were completely oxidized and nitrogen removal efficiency achieved up to 82%. The operation proceeded to examine the denitrification by decreasing hydraulic retention time (HRT) from 12 to 4 h in stages. At steady state, this laboratory-scale SO-AD MBBR achieved the nitrogen removal efficiency of 94% at the volumetric loading rate of 0.18 kg N·(mreactor3·d)−1. The biofilm formation was examined periodically: the attached volatile solids (AVS) gradually increased corresponding to the decrease of HRT and stabilized at about 1,300 mg AVS·Lreactor−1 at steady state. This study demonstrated that without adding external organic carbon, SO-AD can be successfully applied in moving-bed carriers. The application of SO-AD MBBR has shown the potential for sulfur-containing industrial wastewater treatment, brackish wastewater treatment and the upgrading of the activated sludge system. Moreover, the study provides direct design information for the full-scale MBBR application of the sulfur-cycle based SANI process.


2002 ◽  
Vol 45 (12) ◽  
pp. 321-328 ◽  
Author(s):  
G. Andreottola ◽  
P. Foladori ◽  
M. Ragazzi ◽  
R. Villa

Dairy raw wastewater is characterised by high concentrations and fluctuations of organic matter and nutrient loads related to the discontinuity in the cheese production cycle and machinery washing. The applicability of a Moving Bed Biofilm Reactor (MBBR) filled with FLOCOR-RMP® plastic media to the treatment of dairy wastewater was evaluated in a pilot-plant. COD fractionation of influent wastewater, MBBR performance on COD and nutrient removal were investigated. A removal efficiency of total COD over 80% was obtained with an applied load up to 52.7 gCOD m−2 d−1 (corresponding to 5 kgCOD m−3d−1). The COD removal kinetics for the MBBR system was assessed. The order of the kinetics resulted very close to half-order in the case of a biofilm partially penetrated by the substrate. The nitrogen removal efficiency varied widely between 13.3 and 96.2% due to the bacterial synthesis requirement. The application of a MBBR system to dairy wastewater treatment may be appropriate when upgrading overloaded activated sludge plants or in order to minimise reactor volumes in a pre-treatment.


2019 ◽  
Vol 79 (3) ◽  
pp. 510-517 ◽  
Author(s):  
Magdum Sandip ◽  
V. Kalyanraman

Abstract Fluidization of carrier media for biofilm support and growth defines the moving bed biofilm reactor (MBBR) process. Major MBBR facilities apply virgin polyethylene (PE)-based circular plastic carrier media. Various carriers were studied to replace these conventional carriers, but polyurethane (PU) foam-based carrier media has not been much explored. This study evaluates the potential of PU foam carrier media in aerobic MBBR process for simultaneous nitri-denitrification (SND). Two parallel reactors loaded with conventional PE plastic (circular) and PU foam (cubical) carriers compared for their removal efficiencies of chemical oxygen demand (COD) and nitrogen contaminants from wastewater. Results indicate that average COD removal in MBBR containing PE plastic carrier media was 81%, compared to 83% in MBBR containing PU foam. Average ammonical and total nitrogen reduction was 71% and 59% for PU foam-based MBBR, compared to 60% and 42% for PE plastic-based MBBR. SND-based nitrogen removal capacity was doubled in aerobic MBBR filled with PU foam carrier media (27%), than MBBR containing PE plastic carrier media (13%). Cost economics also governs the commercial advantage for the application of PU foam-based carrier media in the MBBR process.


2020 ◽  
Vol 58 (3A) ◽  
pp. 211
Author(s):  
Quan Truong Nguyen ◽  
Quan Truong Nguyen ◽  
Ha Thi Nguyen

The objective of this study is to investigate the performance of Anaerobic Moving Bed Biofilm Reactor (MBBR) on the removal of organic matters (using COD and TSS values) in piggery wastewater using two kinds of carrier: Polyurethane (PU) and Polyethylene (PE) - Different organic loading rates (OLRs) varying from 4 to 10 gCOD/l/day with controlled temperature 37±2oC, pH 7.0-7.5 were investigated. The seeded sludge was collected at the anaerobic tank of the wastewater treatment plant of the Sabeco Beer Manufacturing Plant (Nam Tu Liem district, Hanoi) and grown in the MBBR for 15 days. For porous PU material, the COD and TSS removal efficiencies achieved 69.7 and 67.3% and 54.9 and 65.5% at OLR 4 and 6 gCOD/l/day, respectively.  Whereas for wheel shape PE material, it was found that the COD removal efficiencies were slightly higher with OLR of 6  gCOD/l/day (71%%), even with higher OLR at 10 gCOD/l.day, the COD removal efficiency didn‘t seem to significantly increase (73.3 %). For TSS removal, in comparison between PU and PE, the later found slightly better with the same OLRs of 4 and 6 gCOD/l/day, reaching 63.2 and 67 %, respectively. However, TSS removal efficiencies were found to be higher with PE carrier at higher OLR, reaching 72% at 10 gCOD/l/day.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 492 ◽  
Author(s):  
Gaetano Di Bella ◽  
Giorgio Mannina

The paper presents an experimental study on a lab scale hybrid moving bed biofilm reactor with intermittent aeration. Specifically, a comparison between two different operating conditions was analyzed: continuous and intermittent aeration. Both continuous and intermittent aeration were monitored and compared in order to get the best operational conditions. The intermittent aeration campaign was sub-divided in three phases with different duration of alternation of aerobic and anoxic times and organic and nitrogen loading rates. The efficiency of N-removal improved by 70% during the intermittent aeration. The best condition was observed with 40 min of aeration and 20 min of no-aeration, an organic loading rate of 2.2 kgCODm−3day−1 and a nitrogen loading rate of 0.25 kgNm−3day−1: under these operational conditions the removal efficiencies for carbon and nitrogen were 93% and 90%, respectively. The derived results provide the basis for WWTP upgrade in order to meet stricter effluent limits at low energy requirements.


1997 ◽  
Vol 35 (2-3) ◽  
pp. 173-180 ◽  
Author(s):  
A. Broch-Due ◽  
R. Andersen ◽  
B. Opheim

Wastewaters from three integrated newsprint mills have been treated in a pilot plant Moving Bed Biofilm Reactor (MBBR). In the MBBR the biomass adheres to small plastic elements which move freely along with the water in the reactor. A reduction of 65-75% for COD and 85-95% for BOD was obtained at HRT of 4-5 hours. By prolonging the HRT the removal efficiencies of COD and BOD increased to about 80% and 96%, respectively. With a subsequent chemical precipitation a removal efficiency of COD up to 95% was achieved. The amount of chemicals needed for precipitation of the biologically treated wastewater was only a quarter to a third of that needed for chemical treatment of the untreated wastewater. The results showed the MBBR process to be competitive with conventional biological treatment systems and that treatment objectives can be met at short HRTs.


2015 ◽  
Vol 73 (7) ◽  
pp. 1511-1519 ◽  
Author(s):  
Khalid Muzamil Gani ◽  
Jasdeep Singh ◽  
Nitin Kumar Singh ◽  
Muntjeer Ali ◽  
Vipin Rose ◽  
...  

In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22–1.22 kg N m−3 d−1 (total nitrogen (TN)), 1.48–7.82 kg chemical oxygen demand (COD) m−3 d−1 (organic) and 0.12–0.89 kg NH4+-N m−3d−1 (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m−3 d−1 when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m−3 d−1. Ammonium removal rates ranged from 0.13 to 0.75 kg NH4+-N m−3 d−1 during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3–7.1 mg/L and 74–356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261306
Author(s):  
Yan Shu ◽  
Donghui Liang

The effect of tetracycline (TC) on nitrogen removal in wastewater treatment plants has become a new problem. This study investigated the effects of TC on nitrogen removal using a Moving Bed Biofilm Reactor system. The results showed that there was no significant effect on nitrogen removal performance when the concentration of TC was 5 mg/L, and that the total nitrogen (TN) removal efficiency could reach 75–77%. However, when the concentration of TC increased to 10 mg/L, the denitrification performance was affected and the TN removal efficiency decreased to 58%. The abundance of denitrifying bacteria such as those in the genus Thauera decreased, and TC-resistant bacteria gradually became dominant. At a TC concentration of 10 mg/L, there were also increases and decreases, respectively, in the abundance of resistance and denitrification functional genes. The inhibitory effect of TC on denitrification was achieved mainly by the inhibition of nitrite-reducing bacteria.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Nusa Idaman Said ◽  
Teguh Iman Santoso

One of the alternative technologies that could be used for domestic waste water treatment is the Moving Bed Biofilm Reactor (MBBR). MBBR in principle is activated sludge that is increased by adding media in to the reactor, so there are two treatments process happened inside, suspended growth and attached growth. This research is using bioball as a media which has surface area of ±210 m2/m3 by 20% volume of reactor volume. Wastewater treatment by MBBR uses variations of Hydraulic Retention time (HRT) 12, 8, 6, and 4 hours, then the parameters measured were BOD, COD, TSS, temperature, and pH. Result of the study shows that within HRT for 12 hours in aeration tank, removal efficiency of COD is 81,37%, BOD is 82,4%, and TSS is 90,05%. HRT for 8 hours, COD removal efficiency is 88,72%, BOD is 89,7%, and TSS is 92,06%. HRT for 6 hours, COD removal efficiency is 85,48%, BOD is 80,15%, and TSS is 94,85%. HRT for 4 hours, COD removal efficiency is 81,07%, BOD is 87,88%, and TSS is 94,86%. With a retention time of 4 hours, the effluent results domestic wastewater treatment using MBBR has met quality standards in accordance with KEPMEN LH no. 112 of 2003 on Domestic Wastewater Quality Standard and Jakarta Governor Regulation no. 122 of 2005 on Domestic Wastewater Management in Special Province of Jakarta. Keywords: Domestic wastewater, MBBR, bioball.


Sign in / Sign up

Export Citation Format

Share Document