scholarly journals MODELING THE DISTRIBUTION OF THE SOUTHERN YELLOW-CHEEKED GIBBON (NOMASCUS GABRIELLAE) USING MAXENT

2021 ◽  
Vol 59 (5) ◽  
Author(s):  
Nhung Thi Hong Cao ◽  
Minh Duc Le ◽  
Anh Tuan Nguyen

The Southern Yellow-cheeked Gibbon (Nomascus gabriellae) is an endangered species found only in a small region of Indochina, and its populations have declined in most known sites. In this study, we use Maxent, a robust and widely used species distribution modeling approach, to predict the current and future distributions of the Southern Yellow-cheeked Gibbon over its entire range based on an extensive review of published records. In total, we compile and provide a comprehensive set of known distribution records of the species from Cambodia, Laos, and Vietnam. The model results show that N. gabriellae potentially occurs in much of area around the Central Highlands in both Vietnam and Cambodia sides and the southern end of Laos. Our study suggests that protected areas in this region will play a key role in conservation actions for the gibbons. In addition, the distribution of the gibbon in future climate conditions, even in the best-case scenario, is likely to shrink significantly, as the species would have to move upwards to higher elevations. Under such impact, the populations will become more fragmented and restricted to a few areas with higher elevations. Our study also confirms that the climatic difference in distribution ranges may not be fully responsible for the speciation and biogeography of the N. annamensis/gabriellae complex.

2021 ◽  
pp. 1-8
Author(s):  
Thaísa Araújo ◽  
Helena Machado ◽  
Dimila Mothé ◽  
Leonardo dos Santos Avilla

Abstract Climatic and environmental changes, as well as human action, have been cited as potential causes for the extinction of megafauna in South America at the end of the Pleistocene. Among megamammals lineages with Holarctic origin, only horses and proboscideans went extinct in South America during this period. This study aims to understand how the spatial extent of habitats suitable for Equus neogeus and Notiomastodon platensis changed between the last glacial maximum (LGM) and the middle Holocene in order to determine the impact that climatic and environmental changes had on these taxa. We used species distribution modeling to estimate their potential extent on the continent and found that both species occupied arid and semiarid open lands during the LGM, mainly in the Pampean region of Argentina, southern and northeastern Brazil, and parts of the Andes. However, when climate conditions changed from dry and cold during the LGM to humid and warm during the middle Holocene, the areas suitable for these taxa were reduced dramatically. These results support the hypothesis that climatic changes were a driving cause of extinction of these megamammals in South America, although we cannot rule out the impact of human actions or other potential causes for their extinction.


Climate ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 24 ◽  
Author(s):  
Lauren Hannah ◽  
Glenn Aguilar ◽  
Dan Blanchon

The invasive species Erigeron karvinskianus or Mexican daisy is considered a significant weed that impacts native forest restoration efforts in New Zealand. Mapping the potential distribution of this species under current and future predicted climatic conditions provides managers with relevant information for developing appropriate management strategies. Using occurrences available from global and local databases, spatial distribution characteristics were analyzed using geostatistical tools in ArcMap to characterize current distribution. Species distribution modeling (SDM) using Maxent was conducted to determine the potential spatial distribution of E. karvinskianus worldwide and in New Zealand with projections into future climate conditions. Potential habitat suitability under future climatic conditions were simulated using greenhouse gas emission trajectories under the Representative Concentration Pathway (RCP) models RCP2.6, RCP4.5, RCP6.0 and RCP8.5 for years 2050 and 2070. Occurrence data were processed to minimize redundancy and spatial autocorrelation; non-correlated environmental variables were determined to minimize bias and ensure robust models. Kernel density, hotspot and cluster analysis of outliers show that populated areas of Auckland, Wellington and Christchurch have significantly greater concentrations of E. karvinskianus. Species distribution modeling results find an increase in the expansion of range with higher RCP values, and plots of centroids show a southward movement of predicted range for the species.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
B Liu ◽  
F Li ◽  
Z Guo ◽  
L Hong ◽  
W Huang ◽  
...  

2018 ◽  
Vol 80 (6) ◽  
pp. 457-461
Author(s):  
Carlos A. Morales-Ramirez ◽  
Pearlyn Y. Pang

Open-source data are information provided free online. It is gaining popularity in science research, especially for modeling species distribution. MaxEnt is an open-source software that models using presence-only data and environmental variables. These variables can also be found online and are generally free. Using all of these open-source data and tools makes species distribution modeling (SDM) more accessible. With the rapid changes our planet is undergoing, SDM helps understand future habitat suitability for species. Due to increasing interest in biogeographic research, SDM has increased for marine species, which were previously not commonly found in this modeling. Here we provide examples of where to obtain the data and how the modeling can be performed and taught.


2021 ◽  
Vol 257 ◽  
pp. 109148
Author(s):  
Leonardo de Sousa Miranda ◽  
Marcelo Awade ◽  
Rodolfo Jaffé ◽  
Wilian França Costa ◽  
Leonardo Carreira Trevelin ◽  
...  

Biologia ◽  
2021 ◽  
Author(s):  
Nabaz R. Khwarahm ◽  
Korsh Ararat ◽  
Barham A. HamadAmin ◽  
Peshawa M. Najmaddin ◽  
Azad Rasul ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document