Spatial distribution modeling of the wild boar (Sus scrofa) under current and future climate conditions in Iraq

Biologia ◽  
2021 ◽  
Author(s):  
Nabaz R. Khwarahm ◽  
Korsh Ararat ◽  
Barham A. HamadAmin ◽  
Peshawa M. Najmaddin ◽  
Azad Rasul ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2033
Author(s):  
Maria Eduarda Maldaner ◽  
Thadeu Sobral-Souza ◽  
Victor Mateus Prasniewski ◽  
Fernando Z. Vaz-de-Mello

Climate change is a serious threat, and it is necessary to prepare for the future climate conditions of grazing areas. Dung beetle species can help mitigate global warming by contributing to intense nutrient cycling and reduction in greenhouse gas emissions caused by cattle farming. Additionally, dung beetles increase soil quality through bioturbation and reduce nematodes and hematophagous flies’ abundance in grasslands areas. There are several dung beetle species inhabiting South American pastures, however, the effects of climate change on their spatial distribution are still unknown. Here, we aimed to predict the potential effects of future climate change on the geographical spatial distribution of the four most important (“key”) pastureland dung beetle species that are native to South America. We used niche-based models and future climate simulations to predict species distribution through time. Our findings show radical reduction in the spatial range of dung beetle species, especially in recently opened areas, e.g., the Amazon region. We suggest that the consequences of these species’ spatial retraction will be correlated with ecosystem services depletion under future climate conditions, urgently necessitating pasture restoration and parasite control, as the introduction of new alien species is not encouraged.


2019 ◽  
Vol 149 (1) ◽  
Author(s):  
Anneleen Rutten ◽  
Jim Casaer ◽  
Thierry Onkelinx ◽  
Lieven De Smet ◽  
Nele Witters ◽  
...  

Wild boar (Sus scrofa L.) reappeared in Flanders (northern Belgium) in 2006 after almost half a century of absence. Interactions between wild boar and human activities are frequent due to extensive fragmentation of the landscape in Flanders. Complaints about agricultural damage are increasing but the actual extent of crop damage remains unknown. The goal of this study was to assess the current risk and the spatial distribution of crop damage, as well as factors influencing damage distribution in the province of Limburg (eastern Flanders). An online survey was sent to farmers by email. Moreover, as we expected potential respondent bias towards farmers that already experienced damage, we also conducted a follow-up non-respondent check by telephone. Our study showed that the current crop damage probability on a farm lies between 42% (likely an overestimation due to respondent bias in the online survey) and 22% (an underestimation based on the non-respondent check). There is considerable geographical variation in the proportion of farms that report boar damage; probability for crop damage due to wild boar is relatively high for farmers in Limburg but shows a geographically heterogeneous spread. Factors explaining the crop damage probability differed strongly between the online survey and the non-respondent check and no consistent results could be found. Our results show that using the online survey, it was possible to get an initial insight in the geographical distribution of crop damage. However, as we found differences between the results of the online survey and the non-respondent check, taking management decisions based solely on online survey results without conducting a non-respondent check could lead to misguided actions.


Climate ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 24 ◽  
Author(s):  
Lauren Hannah ◽  
Glenn Aguilar ◽  
Dan Blanchon

The invasive species Erigeron karvinskianus or Mexican daisy is considered a significant weed that impacts native forest restoration efforts in New Zealand. Mapping the potential distribution of this species under current and future predicted climatic conditions provides managers with relevant information for developing appropriate management strategies. Using occurrences available from global and local databases, spatial distribution characteristics were analyzed using geostatistical tools in ArcMap to characterize current distribution. Species distribution modeling (SDM) using Maxent was conducted to determine the potential spatial distribution of E. karvinskianus worldwide and in New Zealand with projections into future climate conditions. Potential habitat suitability under future climatic conditions were simulated using greenhouse gas emission trajectories under the Representative Concentration Pathway (RCP) models RCP2.6, RCP4.5, RCP6.0 and RCP8.5 for years 2050 and 2070. Occurrence data were processed to minimize redundancy and spatial autocorrelation; non-correlated environmental variables were determined to minimize bias and ensure robust models. Kernel density, hotspot and cluster analysis of outliers show that populated areas of Auckland, Wellington and Christchurch have significantly greater concentrations of E. karvinskianus. Species distribution modeling results find an increase in the expansion of range with higher RCP values, and plots of centroids show a southward movement of predicted range for the species.


2021 ◽  
Vol 112 ◽  
pp. 102711
Author(s):  
Soheil Radfar ◽  
Mehdi Shafieefar ◽  
Hassan Akbari ◽  
Panagiota A. Galiatsatou ◽  
Ahmad Rezaee Mazyak

2021 ◽  
pp. 100182
Author(s):  
Emanuela Sannino ◽  
Lorena Cardillo ◽  
Rubina Paradiso ◽  
Anna Cerrone ◽  
Paolo Coppa ◽  
...  

Biologia ◽  
2021 ◽  
Author(s):  
Gabriela Čonková-Skybová ◽  
Silvia Zemanová ◽  
Katarína Bárdová ◽  
Peter Reichel ◽  
Róbert Link ◽  
...  

2021 ◽  
Vol 9 (6) ◽  
pp. 1256
Author(s):  
Teresa Letra Mateus ◽  
Maria João Gargaté ◽  
Anabela Vilares ◽  
Idalina Ferreira ◽  
Manuela Rodrigues ◽  
...  

Cystic echinococcosis (CE) is a zoonosis that is prevalent worldwide. It is considered endemic in Portugal but few studies have been performed on Echinococcus granulosus sensu lato and their hosts. In this study, CE cysts are reported for the first time in a free-living wild boar (Sus scrofa) in Portugal. The presence of the metacestodes in the liver of the wild boar was identified by morphological features, microscopic examination and molecular analysis. The sequencing of part of the DNA nuclear ribosomal internal transcribed spacer-1 (ITS-1) region revealed a G5 genotype that presently corresponds to Echinococcus ortleppi. This is the first report of E. ortleppi in Portugal and to the best of the authors’ knowledge, in Europe. These results suggest that wild boar may be a host of CE, namely, crossing the livestock–wildlife interface, which has important public health implications. Wildlife reservoirs must be taken into account as CE hosts and surveillance of game as well as health education for hunters should be implemented using a One Health approach, with implementation of feasible and tailor-made control strategies, namely, proper elimination of byproducts in the field.


Sign in / Sign up

Export Citation Format

Share Document