scholarly journals Efficiency assessment of microplastic extraction from green mussel \(\textit{Perna viridis}\) Linnaeus

2021 ◽  
Vol 43 (4) ◽  
pp. 55-66
Author(s):  
Doan Thi Oanh ◽  
Duong Thi Thuy ◽  
Nguyen Thi Nhu Huong ◽  
Hoang Thi Quynh ◽  
Vu Thi Nguyet ◽  
...  

Microplastics with particle size less than 5 mm are becoming a raising global environmental crisis. These pollutants were found from the poles to the equator, in continental shelves, coasts and in the oceans, moreover, they have also been identified in the water columns, sediments and even in a variety of organisms. The majority of microplastics that ended up in the oceans originate from the land. Due to their small size, they are easily accumulated in the food chain, causing harmful effects on organisms and human health. The bivalves especially caught the interest of scientific researchers because of their direct contact with microplastics through the filter-feeding habit. Therefore, it is essential to develop methods to determine the presence of microplastics in these organisms and identify their source. This study evaluated the efficiency of extracting microplastics from the tissues of green mussels (Perna viridis) using KOH 10% solution to digest and KI 50% as the separating solution. Mussel soft tissue samples were spiked five different types of microplastics: polystyrene (PS), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polypropylene (PP), high-density polyethylene (HDPE) and treated with KOH 10% solution and KI 50% solution. The presence of microplastics in some green mussel species was also investigated in some mussel farming areas in Giao Thuy, Nam Dinh province, Thi Nai, Quy Nhon, Binh Dinh province and Hue city, Thua Thien Hue province. The research results showed high efficiency of microplastic extraction and recovery with the range from 76% to 97%. Microplastic concentration obtained in all mussel samples variates from 1.0 ± 0.1 particles/g to 1.7 ± 0.6 particles/g, in which fiber microplastics predominated. Microplastics in mussel samples have small sizes of < 1,000 µm and 1,000–2,000 µm, make up 74.15–82.32% and 9.76–14.71%, respectively. Purple was dominant among all mussel samples. This study proved that using KOH 10% solution and KI 50% solution to isolate microplastics is a suitable approach and can be used in monitoring studies of microplastic pollution in bivalves.

Author(s):  
Chen-Jing Sun ◽  
Li-Ping Zhao ◽  
Rui Wang

: With the development of industrialization, the global environmental pollution and energy crisis are becoming increasingly serious. Organic pollutants pose a serious health threat to human beings and other organisms. The removal of organic pollutants in environment has become a global challenge. The photocatalytic technology has been widely used in the degradation of organic pollutants with its characteristics of simple process, high efficiency, thorough degradation and no secondary pollution. However, the single photocatalyst represented by TiO2 has disadvantages of low light utilization rate and high recombination rate of photocarriers. Building heterojunction is considered one of the most effective methods to enhance the photocatalytic performance of single photocatalyst, which can improve the separation efficiency of photocarriers and utilization of visible light. The classical heterojunction can be divided into four different cases: type I, typeⅡ, p–n heterojunctions and Z-scheme junction. In this paper, the recent progress in the treatment of organic pollution by heterostructure photocatalysts is summarized and the mechanism of heterostructure photocatalysts for the treatment of organic pollutants is reviewed. It is expected that this paper can deepen the understanding of heterostructure photocatalysts and provide guidance for high efficient photocatalytic degradation of organic pollutants in the future.


2014 ◽  
Vol 10 (2) ◽  
pp. 100-106 ◽  
Author(s):  
Khusnul Yaqin ◽  
Joeharnani Tresnati ◽  
Rohani Rape ◽  
Muhammad Aslam

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmood Sadat-Noori ◽  
Caleb Rankin ◽  
Duncan Rayner ◽  
Valentin Heimhuber ◽  
Troy Gaston ◽  
...  

AbstractClimate change driven Sea Level Rise (SLR) is creating a major global environmental crisis in coastal ecosystems, however, limited practical solutions are provided to prevent or mitigate the impacts. Here, we propose a novel eco-engineering solution to protect highly valued vegetated intertidal ecosystems. The new ‘Tidal Replicate Method’ involves the creation of a synthetic tidal regime that mimics the desired hydroperiod for intertidal wetlands. This synthetic tidal regime can then be applied via automated tidal control systems, “SmartGates”, at suitable locations. As a proof of concept study, this method was applied at an intertidal wetland with the aim of restabilising saltmarsh vegetation at a location representative of SLR. Results from aerial drone surveys and on-ground vegetation sampling indicated that the Tidal Replicate Method effectively established saltmarsh onsite over a 3-year period of post-restoration, showing the method is able to protect endangered intertidal ecosystems from submersion. If applied globally, this method can protect high value coastal wetlands with similar environmental settings, including over 1,184,000 ha of Ramsar coastal wetlands. This equates to a saving of US$230 billion in ecosystem services per year. This solution can play an important role in the global effort to conserve coastal wetlands under accelerating SLR.


2021 ◽  
pp. 102045
Author(s):  
Agoes Soegianto ◽  
Trisnadi Widyaleksono Catur Putranto ◽  
Carolyn Melissa Payus ◽  
Fatmala Rizqa Zarqasi ◽  
Puspitha Primardiati Syafitrirulla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document