scholarly journals Effects of non-toxic filamentous cyanobacteria isolated from tri an reservoir on Daphnia

2020 ◽  
Vol 42 (3) ◽  
Author(s):  
Pham Thanh Luu ◽  
Tran Thi Hoang Yen ◽  
Tran Thanh Thai ◽  
Ngo Xuan Quang ◽  
Hoang Nghia Son

This study is aimed to examine whether the presence of non-toxic filamentous cyanobacteria can cause toxic effects on Daphnia magna. Six strains of Oscillatoria perornata were isolated from the Tri An Reservoir and cultured in our laboratory for investigation. The results revealed that all strains were negative with the mcyA moleculer marker. The high performance liquid chromatography (HPLC) results showed that toxin was not detected in their culture products, indicating that these strains corresponded to non-toxin producing strains. However, the results of chronic assay indicated that these non-toxin producing O. perornata conferred toxic effects on the tested animals. The age at first reproduction of D. magna was delayed and the survival of D. manga decreased in proportional with the increase of the density of cells of O. perornata exposed. Significant differences in the life history responses were observed for D. mangna exposed to O. perornata. These results suggested that bioactive secondary metabolites other than microcystins produced by the filamentous cyanobacteria O. perornata may contribute to the toxic effects on Daphnia. Besides cyanotoxins, other secondary metabolites must be taken into account when investigating the toxic effects of cyanobacteria.   

2020 ◽  
Vol 75 (3-4) ◽  
pp. 75-86
Author(s):  
Taiji Nomura ◽  
Yasuo Kato

AbstractTuliposides (Pos) are major defensive secondary metabolites in tulip (genus Tulipa), having 4-hydroxy-2-methylenebutanoyl and/or (3S)-3,4-dihydroxy-2-methylenebutanoyl groups at the C-1 and/or C-6 positions of d-glucose. The acyl group at the C-6 position is converted to antimicrobial lactones, tulipalins, by tuliposide-converting enzymes (TCEs). In the course of a survey of tulip tissue extracts to identify novel Pos, we found a minute high-performance liquid chromatography peak that disappeared following the action of a TCE, and whose retention time differed from those of known Pos. Spectroscopic analyses of the purified compound, as well as its enzymatic degradation products, revealed its structure as 5″-O-(6-O-(4′-hydroxy-2′-methylenebutanoyl))-β-d-glucopyranosyl-(2″R)-2″-hydroxymethyl-4″-butyrolactone, which is a novel glucoside ester-type Pos. We gave this compound the trivial name ‘tuliposide G’ (PosG). PosG accumulated in bulbs, at markedly lower levels than 6-PosA (the major Pos in bulbs), but was not found in any other tissues. Quantification of PosG in bulbs of 52 types of tulip, including 30 cultivars (Tulipa gesneriana) and 22 wild Tulipa spp., resulted in the detection of PosG in 28 cultivars, while PosG was present only in three wild species belonging to the subgenus Tulipa, the same subgenus to which tulip cultivars belong, suggesting the potential usefulness of PosG as a chemotaxonomic marker in tulip.


2020 ◽  
Vol 75 (1-2) ◽  
pp. 7-12 ◽  
Author(s):  
Taiji Nomura ◽  
Shinjiro Ogita ◽  
Yasuo Kato

Abstract6-Tuliposides A (6-PosA) and B (6-PosB) are major defensive secondary metabolites in tulip cultivars (Tulipa gesneriana), having an acyl group at the C-6 position of d-glucose. Although some wild tulip species produce 1,6-diacyl-glucose type of Pos (PosD and PosF), as well as 6-PosA/B, they have not yet been isolated from tulip cultivars. Here, aiming at verifying the presence of PosD and PosF in tulip cultivars, tissue extracts of 25 cultivars were analyzed by high-performance liquid chromatography (HPLC). Although no HPLC peaks for PosD nor PosF were detected in most cultivars, we found two cultivars giving a minute HPLC peak for PosD and the other two cultivars giving that for PosF. PosD and PosF were then purified from petals of cultivar ‘Orca’ and from pistils of cultivar ‘Murasakizuisho’, respectively, and their identities were verified by spectroscopic analyses. This is the first report that substantiates the presence of 1,6-diacyl-glucose type of Pos in tulip cultivars.


Sign in / Sign up

Export Citation Format

Share Document