Effects of a Low-Intensity Laser on Dental Implant Osseointegration: Removal Torque and Resonance Frequency Analysis in Rabbits

2016 ◽  
Vol 42 (4) ◽  
pp. 316-320 ◽  
Author(s):  
Alberto Blay ◽  
Claudia C Blay ◽  
Samy Tunchel ◽  
Sergio Alexandre Gehrke ◽  
Jamil Awad Shibli ◽  
...  

The objective of this study was to investigate how a low-intensity laser affects the stability and reverse torque resistance of dental implants installed in the tibia of rabbits. Thirty rabbits received 60 dental implants with the same design and surface treatment, one in each proximal metaphysis of the tibia. Three groups were prepared (n = 10 animals each): conventional osseointegration without treatment (control group), surgical sites irradiated with a laser beam emitted in the visible range of 680 nm (Lg1 group), surgical sites irradiated with a laser beam with a wavelength in the infrared range of 830 nm (Lg2 group). Ten irradiation sessions were performed 48 hours apart; the first session was during the immediate postoperative period. Irradiation energy density was 4 J/cm2 per point in 2 points on each side of the tibias. The resonance frequency and removal torque values were measured at 2 time points after the implantations (3 and 6 weeks). Both laser groups (Lg1 and Lg2) presented a significant difference between resonance frequency analysis values at the baseline and the values obtained after 3 and 6 weeks (P > .05). Although the removal torque values of all groups increased after 6 weeks (P < .05), both laser groups presented greater mean values than those of the control group (P < .01). Photobiomodulation using laser irradiation with wavelengths of 680 and 830 nm had a better degree of bone integration than the control group after 6 weeks of observation time.

2020 ◽  
pp. 026248932097179
Author(s):  
Margherita Tumedei ◽  
Adriano Piattelli ◽  
Antonello Falco ◽  
Francesco De Angelis ◽  
Felice Lorusso ◽  
...  

The dental implant primary stability and micromovement absence represent critical factor for dental implant osseointegration. The aim of the present in vitro investigation was to simulate the bone response on different polyurethane densities the effect of self-tapping threads and round apex implant geometry. A total of 40 implants were positioned in D1, D2, D3 and D4 polyurethane block densities following a calibrated drilling protocol. The Insertion, removal Torque and resonance frequency analysis (RFA) means were calculated. All experimental conditions showed insertion torque values >30 Ncm. A significant higher insertion torque, removal and RFA was present in D1 polyurethane. Similar evidences were evidenced for D3 and D4. The effectiveness of the present study suggested a valuable clinical advantage for self-tapping threads and round apex implant using, such as in case of reduced bone density in the posterior maxilla


2008 ◽  
Vol 02 (04) ◽  
pp. 254-262 ◽  
Author(s):  
Yakup Ustun ◽  
Ozgur Erdogan ◽  
Mehmet Kurkcu ◽  
Tolga Akova ◽  
Ibrahim Damlar

ABSTRACTObjectives: The aim of this pilot study was to evaluate the effects of low intensity pulsed ultrasound (LIPU) on dental implant osseointegration in a rabbit model using mechanical-histomorphometric methods and resonance-frequency analysis (RFA).Methods: Twelve skeletally mature, male New Zealand rabbits (3.4 kg±0.5) were included in the study. A total number of 24 implants were placed bilaterally into the tibiae of the subjects. The right tibia of each rabbit received LIPU application (20 min/day) while the left side received sham treatment. The study was carried on for six weeks and the rabbits were sacrificed in 7 days intervals (two rabbits for each week). The rabbits were categorized in the early or late osseointegration period according to their sacrification date. Comparisons between the groups were made using statistical analysis of histomorphometric analysis, resonance frequency analysis and mechanical tests.Results: The histomorphometry parameters showed that the bone area and the bone volume values have significantly increased in the early osseointegration period and the bone-implant contact values have significantly increased in the late osseointegration period in the LIPU treated subjects when compared to the control group. RFA scores had mild increase in the LIPU group. However the difference was not statistically significant. Mechanical test results suggest an increased mechanical stability in the LIPU group as well.Conclusions: Results of this pilot study indicate that low intensity pulsed ultrasound may have positive effects on osseointegration and stability of dental implants. (Eur J Dent 2008;2:254-262)


Author(s):  
Luca Comuzzi ◽  
Margherita Tumedei ◽  
Camillo D’Arcangelo ◽  
Adriano Piattelli ◽  
Giovanna Iezzi

Background: Several different dental implant microgeometries have been investigated in the literature for use in low-density bone sites. The polyurethane solid rigid blocks represent an optimal in vitro study model for dental implants, because their composition is characterized by symmetrical linear chains of monomers of hexa-methylene sequences producing a self-polymerization process. The aim of the present investigation was to evaluate the primary stability of cylindrical and tapered implants positioned into low-density polyurethane solid rigid blocks. Materials and Methods: Two different macrogeometries, cylindrical (4 mm diameter and 10 mm length) and tapered dental implants (4.20 mm diameter and 10 mm length), were investigated in the present study. The implants were inserted into 10 PCF and 20 PCF polyurethane blocks, with and without an additional cortical layer. The insertion torque (IT) values, the removal torque values (RTVs), and the resonance frequency analysis (RFA) values were measured and recorded. Results: A total of 80 sites were tested, and a significant increased primary stability (PS) was detected in favour of tapered dental implants when compared to cylindrical implants in all experimental conditions (p < 0.05). Higher IT, RT, and RFA values were measured in tapered implants in 10 and 20 PCF polyurethane blocks, both with and without the additional cortical layer. Conclusions: Both implants showed sufficient primary stability in poor density substrates, while, on the other hand, the tapered microgeometry showed characteristics that could also lead to clinical application in low-density posterior maxillary sites, even with a drastically decreased bone cortical component.


Author(s):  
Ingrid Kästel ◽  
Giles de Quincey ◽  
Jörg Neugebauer ◽  
Robert Sader ◽  
Peter Gehrke

Abstract Background There is disagreement about the optimal torque for tightening smartpegs for resonance frequency analysis (RFA). Subjective finger pressure during hand tightening could affect the reliability of the resulting values. The aim of the current study was therefore to assess whether or not the insertion torque of a smartpeg magnetic device influences the implant stability quotient (ISQ) value during RFA. Methods Thirty self-tapping screw implants (XiVE S, Dentsply Sirona Implants, Bensheim, Germany) with a diameter of 3.8 mm and a length of 11 mm were inserted in three cow ribs with a bone quality of D1. The RFA value of each implant was measured (Ostell, FA W&H Dentalwerk, Bürmoos, Austria) in two orthogonal directions (mesial and buccal) after tightening the corresponding smartpeg type 45 with a mechanically defined value of 5 Ncm (Meg Torq device, Megagen, Daegu, South Korea) (test). Additionally, 4 different examiners measured the RFA after hand tightening the smartpegs, and the results were compared (control). Insertion torque values were determined by measuring the unscrew torque of hand seated smartpegs (Tohnichi Manufacturing Co. Ltd, Tokyo, Japan). Results The ISQ values varied from 2 to 11 Ncm by hand tightening and from 2 to 6 Ncm by machine tightening. The comparison of hand and machine tightening of smartpegs displayed only minor differences in the mean ISQ values with low standard deviations (mesial 79.76 ± 2,11, buccal 77.98 ± 2,) and no statistical difference (mesial p = 0,343 and buccal p = 0,890). Conclusions Manual tightening of smartpeg transducers allows for an objective and reliable determination of ISQ values during RFA.


2014 ◽  
Vol 40 (3) ◽  
pp. 259-262 ◽  
Author(s):  
Luiz Carlos Magno Filho ◽  
Fabiano Ribeiro Cirano ◽  
Fernando Hayashi ◽  
Hsu Shao Feng ◽  
Alexandre Conte ◽  
...  

The primary stability of dental implants is fundamental for osseointegration. Therefore, this study aimed to assess the correlation between insertion torque (IT) and resonance frequency analysis (RFA) of implants placed in mandibles and maxillas of different bone densities. Eighty dental implants were placed in maxillas and mandibles, and IT and the implant stability quotient (ISQ) were measured at the time of implant insertion. Bone density was assessed subjectively by the Lekholm and Zarb index. The type I and II densities were grouped together (group A)as were the type III and IV densities (group B). The IT in group A was higher (Student t test, P = .0013) than in group B (46.27 ± 18.51 Ncm, 33.62 ± 14.74 Ncm, respectively). The implants placed in group A showed higher ISQ (Student t test, P = .0004) than those placed in group B (70.09 ± 7.50, 63.66 ± 8.00, respectively). A significant correlation between IT and the ISQ value was observed for group A (Pearson correlation test; r = 0.35; P = .0213) and for group B (r = 0.37; P = .0224). Within the limitations of this study, it was possible to conclude that there is a correlation between IT and RFA of implants placed in mandibles and maxillas of different bone densities.


Sign in / Sign up

Export Citation Format

Share Document