scholarly journals Validating Prediction Models for use in Clinical Practice: Concept, Steps, and Procedures Focusing on Hypertension Risk Prediction

2021 ◽  
Vol 7 (1) ◽  
pp. 54-62
Author(s):  
Mohammad Z. I. Chowdhury ◽  
Tanvir C. Turin
2021 ◽  
Author(s):  
Kate Bentley ◽  
Kelly Zuromski ◽  
Rebecca Fortgang ◽  
Emily Madsen ◽  
Daniel Kessler ◽  
...  

Background: Interest in developing machine learning algorithms that use electronic health record data to predict patients’ risk of suicidal behavior has recently proliferated. Whether and how such models might be implemented and useful in clinical practice, however, remains unknown. In order to ultimately make automated suicide risk prediction algorithms useful in practice, and thus better prevent patient suicides, it is critical to partner with key stakeholders (including the frontline providers who will be using such tools) at each stage of the implementation process.Objective: The aim of this focus group study was to inform ongoing and future efforts to deploy suicide risk prediction models in clinical practice. The specific goals were to better understand hospital providers’ current practices for assessing and managing suicide risk; determine providers’ perspectives on using automated suicide risk prediction algorithms; and identify barriers, facilitators, recommendations, and factors to consider for initiatives in this area. Methods: We conducted 10 two-hour focus groups with a total of 40 providers from psychiatry, internal medicine and primary care, emergency medicine, and obstetrics and gynecology departments within an urban academic medical center. Audio recordings of open-ended group discussions were transcribed and coded for relevant and recurrent themes by two independent study staff members. All coded text was reviewed and discrepancies resolved in consensus meetings with doctoral-level staff. Results: Though most providers reported using standardized suicide risk assessment tools in their clinical practices, existing tools were commonly described as unhelpful and providers indicated dissatisfaction with current suicide risk assessment methods. Overall, providers’ general attitudes toward the practical use of automated suicide risk prediction models and corresponding clinical decision support tools were positive. Providers were especially interested in the potential to identify high-risk patients who might be missed by traditional screening methods. Some expressed skepticism about the potential usefulness of these models in routine care; specific barriers included concerns about liability, alert fatigue, and increased demand on the healthcare system. Key facilitators included presenting specific patient-level features contributing to risk scores, emphasizing changes in risk over time, and developing systematic clinical workflows and provider trainings. Participants also recommended considering risk-prediction windows, timing of alerts, who will have access to model predictions, and variability across treatment settings.Conclusions: Providers were dissatisfied with current suicide risk assessment methods and open to the use of a machine learning-based risk prediction system to inform clinical decision-making. They also raised multiple concerns about potential barriers to the usefulness of this approach and suggested several possible facilitators. Future efforts in this area will benefit from incorporating systematic qualitative feedback from providers, patients, administrators, and payers on the use of new methods in routine care, especially given the complex, sensitive, and unfortunately still stigmatized nature of suicide risk.


2014 ◽  
Vol 54 (3) ◽  
pp. 361-367 ◽  
Author(s):  
Ellen G. Engelhardt ◽  
Arwen H. Pieterse ◽  
Nanny van Duijn-Bakker ◽  
Judith R. Kroep ◽  
Hanneke C. J. M. de Haes ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1495
Author(s):  
Tú Nguyen-Dumont ◽  
James G. Dowty ◽  
Robert J. MacInnis ◽  
Jason A. Steen ◽  
Moeen Riaz ◽  
...  

While gene panel sequencing is becoming widely used for cancer risk prediction, its clinical utility with respect to predicting aggressive prostate cancer (PrCa) is limited by our current understanding of the genetic risk factors associated with predisposition to this potentially lethal disease phenotype. This study included 837 men diagnosed with aggressive PrCa and 7261 controls (unaffected men and men who did not meet criteria for aggressive PrCa). Rare germline pathogenic variants (including likely pathogenic variants) were identified by targeted sequencing of 26 known or putative cancer predisposition genes. We found that 85 (10%) men with aggressive PrCa and 265 (4%) controls carried a pathogenic variant (p < 0.0001). Aggressive PrCa odds ratios (ORs) were estimated using unconditional logistic regression. Increased risk of aggressive PrCa (OR (95% confidence interval)) was identified for pathogenic variants in BRCA2 (5.8 (2.7–12.4)), BRCA1 (5.5 (1.8–16.6)), and ATM (3.8 (1.6–9.1)). Our study provides further evidence that rare germline pathogenic variants in these genes are associated with increased risk of this aggressive, clinically relevant subset of PrCa. These rare genetic variants could be incorporated into risk prediction models to improve their precision to identify men at highest risk of aggressive prostate cancer and be used to identify men with newly diagnosed prostate cancer who require urgent treatment.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3533
Author(s):  
Paul Lacaze ◽  
Andrew Bakshi ◽  
Moeen Riaz ◽  
Suzanne G. Orchard ◽  
Jane Tiller ◽  
...  

Genomic risk prediction models for breast cancer (BC) have been predominantly developed with data from women aged 40–69 years. Prospective studies of older women aged ≥70 years have been limited. We assessed the effect of a 313-variant polygenic risk score (PRS) for BC in 6339 older women aged ≥70 years (mean age 75 years) enrolled into the ASPREE trial, a randomized double-blind placebo-controlled clinical trial investigating the effect of daily 100 mg aspirin on disability-free survival. We evaluated incident BC diagnoses over a median follow-up time of 4.7 years. A multivariable Cox regression model including conventional BC risk factors was applied to prospective data, and re-evaluated after adding the PRS. We also assessed the association of rare pathogenic variants (PVs) in BC susceptibility genes (BRCA1/BRCA2/PALB2/CHEK2/ATM). The PRS, as a continuous variable, was an independent predictor of incident BC (hazard ratio (HR) per standard deviation (SD) = 1.4, 95% confidence interval (CI) 1.3–1.6) and hormone receptor (ER/PR)-positive disease (HR = 1.5 (CI 1.2–1.9)). Women in the top quintile of the PRS distribution had over two-fold higher risk of BC than women in the lowest quintile (HR = 2.2 (CI 1.2–3.9)). The concordance index of the model without the PRS was 0.62 (95% CI 0.56–0.68), which improved after addition of the PRS to 0.65 (95% CI 0.59–0.71). Among 41 (0.6%) carriers of PVs in BC susceptibility genes, we observed no incident BC diagnoses. Our study demonstrates that a PRS predicts incident BC risk in women aged 70 years and older, suggesting potential clinical utility extends to this older age group.


Sign in / Sign up

Export Citation Format

Share Document