scholarly journals Croscarmellose Sodium Efficiency in the Development of a Generic Capsule Formulation of Piroxicam, Comparable Dissolution Profile to the Innovator Product, Feldene

2014 ◽  
Vol 1 (6) ◽  
Author(s):  
Nwoko Valentine E
Author(s):  
V A. Vamshi Priya ◽  
G. Chandra Sekhara Rao ◽  
D. Srinivas Reddy ◽  
V. Prabhakar Reddy

The purpose of this study was to investigate the efficiency of superdisintegrants: sodium starch glycolate, croscarmellose sodium and crospovidone in promoting tablet disintegration and drug dissolution of Topiramate immediate release tablets. The efficiency of superdisintegrants was tested, by considering four concentrations, viz., like 2%, 3%, 4% and 5% in the formulations. The dissolution was carried out in USP apparatus II at 50 rpm with distilled water as a dissolution medium. The dissolution rate of the model drug topiramate was found highly dependent on the tablet disintegration, on the particle size of the superdisintegrant, on the solubility of the drug and also on the type of superdisintegrant in the dissolution medium. There was no effect of the diluent (Lactose monohydrate) on the disintegration of different concentrations of superdisintegrants. These results suggest that, as determined by the f2 metric (similarity factor), the dissolution profile of the formulation containing 4% sodium starch glycolate and lactose monohydrate as a diluent was similar to that of a marketed product.


Author(s):  
Rajan Verma ◽  
Shrikant Hodge ◽  
Chandrashekhar Gargote ◽  
Prakash Modi ◽  
Naresh Upreti ◽  
...  

<p class="abstract"><strong>Background:</strong> This <em>in vitro</em> study compared physical parameters and the dissolution profile of innovator itraconazole capsule formulation, i-Tyza, and 5 other generic capsule formulations available in the Indian market.</p><p class="abstract"><strong>Methods:</strong> The number of pellets and size distribution were determined using naked eye examination and sieving method, respectively. Dissolution profile of formulations was done at 15, 30, 45, and 60 minutes, using a United States Pharmacopeia type II Paddle apparatus in simulated gastric fluid (SGF, pH 1.2) without enzymes, acetate buffer (pH 4.5) with 0.5% sodium lauryl sulfate (SLS), and phosphate buffer (pH 6.8) with 0.5% SLS.<strong></strong></p><p class="abstract"><strong>Results:</strong> All formulations had capsule size 0. Capsule fill weight (~335 to ~510 mg) and total pellet number (127 to 810) varied across formulation, with the innovator brand having the highest number of pellets. Innovator product and i-Tyza had similar fill weight (~460 mg). Pellet size distribution of the innovator product, brand 2, brand 3, and i-Tyza was relatively narrow. In SGF, except brand 1 (84% dissolved) and brand 5 (80% dissolved), all the formulations had near-complete (&gt;85% drug dissolved) or complete dissolution (&gt;90% drug dissolved) at 60 minutes. In acetate buffer, pH 4.5 with 0.5% SLS and phosphate buffer, pH 6.8 with 0.5% SLS, only the innovator product and i-Tyza demonstrated near-complete to complete dissolution at 60 minutes (96% and 90% dissolved).</p><p class="abstract"><strong>Conclusions:</strong> Across all the itraconazole generic formulations evaluated, i-Tyza had comparable physical characteristics and dissolution profile to the innovator product. The <em>in vitro</em> dissolution profile of i-Tyza may indicate adequate <em>in vivo</em> performance.</p>


This study aims to evaluate different products of meloxicam Table; Five meloxicam immediate-release generic products (15 mg Tables) were compared with the innovator, reference product, (Mobic®, Boehringer) to find the interchangeable product with the innovator product. Different physical tests were conducted including weight uniformity, thickness, diameter, hardness, friability and disintegration test. In addition, prediction of in-vivo behavior was assessed by measuring the dissolution profile of meloxicam for all the products. Similarity factor (f2) was calculated to compare between the dissolution profile of the generic products with the dissolution profile of innovator product. The results revealed that all the studied products are complied with the British Pharmacopoeia requirements. However, not all of them showed similar in-vitro profile to the brand product. Four out of five generic products, included in this study, showed similarity in dissolution profile to the brand one, which indicates possible bio-equivalency, with the advantages of money saving of using such generic products. One generic product showed similarity factor less than 50, which might give an indication that this generic product is not capable to be bioequivalent with the brand (innovator) product. Overall, this study can be considered an important applicable study that gives an indication about the in-vivo performance of different products. In addition, the study demonstrates the applicability of a simple in-vitro dissolution study as a surrogate way of assessing product bioavailability instead of an expensive and complicated in-vivo bioequivalent study.


2020 ◽  
Vol 42 (1) ◽  
pp. 17-17
Author(s):  
Salman Zafar Salman Zafar ◽  
Farrukh Sier Farrukh Sier ◽  
Samiullah Samiullah ◽  
Gohar Ayub and Rahat Ullah Gohar Ayub and Rahat Ullah

Iron plays a pivotal role in human physiology, while its deficiency may prove fatal in severe cases. Analytical methods for the quantitative determination of iron are thus very important. Herein, we report the estimation of iron in iron Polysaccharide complex (IPSC) using raw material and formulations, through a spectrophotometric analytical method. IPSC capsules were formulated and their stability was studied by developing a simple and validated analytical method. The process is based on the acid hydrolysis of IPSC and the development of chromogen by reacting ammonium thiocyanate with IPSC, maximum absorption at 474 nm was observed. Beerand#39;s Lambert law (linearity response) was found in the range of 10-20 μg/ml with excellent correlation coefficient of determination (R = 0.998). The quantification and detection limits were established to be 0.45 mcg/ml and 0.14 mcg/ml correspondingly. The recovery of IPSC analysis was 99.25 to 102.28 %. Percentage assay of IPSC capsules showed results around 102.34 %. The formulated IPSC capsule was stable under accelerated conditions for 6 months (% assay andgt; 91.69). The dissolution profile over 60 minutes showed a better dissolution (94%) compared with the internationally marketed IPSC capsule (92%).


2017 ◽  
Vol 63 (1) ◽  
pp. 23-26
Author(s):  
Adriana Ciurba ◽  
Emőke Rédai ◽  
Ioana Pop ◽  
Paula Antonoaea ◽  
Nicoleta Todoran

Abstract Objective: The aim of this study is to develop lactose-free orodispersible tablets with loratadine for patients with lactose intolerance. Materials and methods: Seven compositions (F1-F7) of 10 mg loratadine were prepared in form of orally disintegrating tablets, by direct compression, using croscarmellose sodium and pre-gelatinized starch in various concentrations as superdisintegrants, diluted with microcrystalline cellulose and combined with mannitol and maltodextrin as binder agents. The tablets had been studied in terms of their pharmacotechnical characteristics, by determining: the weight uniformity of the tablets, their friability, breaking strength and disintegration time, drug content and the dissolution profile of loratadine. The statistical analyses were performed with GraphPad Prism Software Inc. As dependent variables, both the hardness of the tablets and their disintegration ability differ between batches due to their compositional differences (as independent variables). DDSolver were used for modeling the kinetic of the dissolution processes by fitting the dissolution profiles with time-dependent equations (Zero-order, First-order, Higuchi, Korsmeyer-Peppas, Peppas-Sahlin). Results: All proposed formulas shows rapid disintegration, in less than 15 seconds, and the dissolution loratadine spans a period of about 10 minutes. Akaike index as well as R2 adjusted parameter have demonstrated that the studied dissolution profiles are the best fitted by Zero-order kinetic. Conclusion: In conclusion, association of croscarmellose sodium (7.5%) with pre-gelatinized starch (6%) as superdisintegrants and mannitol as the binder agent (35%), positively influences the dissolution properties of loratadine from orally fast dispersible tablets.


Author(s):  
Vijayanand P. ◽  
Sridevi P. ◽  
Bhagavan Raju M.

Objective: Objective of the present research work was to prepare orodispersible tablets of carvedilol (CDL) for dysphagic patients.Methods: Carvedilol, an anti-hypertensive drug, was chosen as a model drug in this study. Orodispersible tablets of carvedilol were prepared using different super-disintegrating agents such as crospovidone, croscarmellose sodium and sodium starch glycolate at different concentrations. The best formulation was selected based on disintegration and dissolution profile that was further taken for sublimation studies using camphor, menthol and thymol. Drug-excipients interaction studies were carried out by fourier transform infra-red (FTIR) spectrophotometer with pure drug sample and optimized formulation.Results: The orodispersible tablet formulation having 4% croscarmellose sodium disintegrated in 92 sec. Hence this formulation was considered best formulation and taken further for sublimation studies. A formulation containing 10% w/w of menthol showed disintegration time of 16 sec with more than 96.64% drug release within 15 min. Menthol leaves the porous structure as it sublimates from the tablet. This might have contributed to the decrease in disintegration time. Hence, this formulation was considered optimized.Conclusion: From this study, it can be concluded that orodispersible tablets of carvedilol may prove to be more efficacious in the treatment of hypertension particularly in dysphagic patients.


Author(s):  
Y. Shravan Kumar ◽  
Prashanthi Patel ◽  
Sravanthi Ch ◽  
Rashmi B

Aripiprazole is an atypical antipsychotic agent used for treatment of schizophrenia, bipolar disorder and major depressive disorders. In the present work, oral  disintegrating tablets of aripiprazole were developed to  enhance the patient compliance and provide rapid onset of  action. The efficacy of aripiprazole is mediated through a combination of partial agonist activity at dopamine D2 and serotonin 5HT-1A receptors and antagonist activity at 5HT-2A receptors. It has a bitter taste and poor-solubility in water. Thus, the main objective of the study is to formulate taste masked oral disintegrating tablets of aripiprazole by using inclusion complex beta-cyclodextrin to achieve a better dissolution rate and further improving the bioavailability of the drug. Oral disintegrating tablets were   prepared by direct compression method using  super disintegrant like crospovidone, croscarmellose sodium,  sodium starch glycolate and combinations of  cros-povidone with croscarmellose sodium, and crospovidone with sodium  starch glycolate in different concentrations. They were evaluated for the pre-compression parameters such as bulk density, compressibility, Hausner ratio and angle of repose. The prepared batches of tablets were evaluated for hardness, weight variation, thickness, friability, drug content, disintegration time, wetting time,    in vitro dispersion time, and in vitro dissolution profile. All these parameters were found to be satisfactory. Among all, the formulation F15 containing crospovidone 5% + cros-povidone with croscarmellose sodium 5% was considered to be the optimum formulation, which released nearly 99% of the drug in 20 minutes with a disintegration time of 10. 20 seconds. These studies indicate the viability and benefits of oral disintegrating tablets of aripiprazole. 


Author(s):  
Ishraq K. Abbas ◽  
Nawal A. Rajab ◽  
Ahmed A. Hussein

         Darifenacin hydrobromide (DH) is the more recent uroselective M3 receptor antagonist for treating uncomplicated overactive bladder (OAB). This study was aimed to formulate DH as fast dissolving buccal films (FDBFs) using a solvent casting method to enhance patient’s compliance.          Films were prepared by using polyvinyl alcohol (PVA) as a film forming polymer. Different types and concentrations of superdisintegrants (croscarmellose sodium, sodium starch glycolate, indion 414) were used to select the best formula by studying the physicochemical properties of the films, disintegration time (DT) and percent drug release.          The results revealed that formula (F9) that containing 7.5mg DH, 2%w/v PVA, 30%w/w glycerol, 0.5%w/v tween 80, 4%w/w indion 414 was the preferred formula.  F9 showed the shortest in-vitro disintegration time (31.28sec).  In-vitro dissolution profile showed the lowest T80% of the drug in 3.05 min and the highest release of the drug (94%) within 5 min (D5min %).           It was concluded that the FDBFs of DH could be considered as a promising drug delivery system with an enhanced disintegration and dissolution rate and better patient compliance.


Author(s):  
Subedi R. ◽  
Poudel K. ◽  
Budhathoki U ◽  
Thapa P.

This study was done to mask the bitter taste of ondansetron HCl using complexing agent, a polacrilex resin: Tulsion 335 and subsequently forming mouth dissolving tablet using superdisintegrants: Croscarmellose sodium and sodium starch glycollate. A preliminary screening was done. Batch process, a most preferential method for drug loading with ion exchange resins was selected. The process was optimized for drug: resin ratio to get maximum drug loading. A ratio of drug: resin at 1:3 was selected. Taste evaluation was carried out by selecting volunteers. Drug resin complex (DRC) was evaluated for drug release. The resultant DRC was formulated by direct compression into mouth dissolving tablet using microcrystalline cellulose PH 102, as diluent and croscarmalose sodium and sodium starch glycolate as superdisintegrants and aspartame was used as sweetening agent to enhance palatability. Thirteen formulations were developed by using superdisintegrants: croscarmellose sodium and sodium starch glycolate. Concentration of superdisintegrants ranged from 0.75-9.24 %. The formulated tablet had satisfactory disintegration time and dissolution profile. Optimization was carried out using central composite design. The disintegration and dissolution times were tallied with marketed ondansetron HCl tablets. From the results, it was deduced that the most effective concentration for desired disintegration was of croscarmellose sodium and sodium starch glycollate respectively at concentration above 5%. Therefore, it can be concluded that the intensely bitter taste of ondansetron HCl can be masked by using tulsion 335 and mouth dissolving ondansetron HCl can be successfully prepared by adding aforementioned superdisintegrants. This sort of mouth dissolving ondansetron HCl can be used in controlling vomiting in paediatric and geriatric patients and also for pregnancy induced vomiting.


Sign in / Sign up

Export Citation Format

Share Document