Formulation and Evaluation of Taste Masked Oral Disintegrating Tablets of Aripiprazole

Author(s):  
Y. Shravan Kumar ◽  
Prashanthi Patel ◽  
Sravanthi Ch ◽  
Rashmi B

Aripiprazole is an atypical antipsychotic agent used for treatment of schizophrenia, bipolar disorder and major depressive disorders. In the present work, oral  disintegrating tablets of aripiprazole were developed to  enhance the patient compliance and provide rapid onset of  action. The efficacy of aripiprazole is mediated through a combination of partial agonist activity at dopamine D2 and serotonin 5HT-1A receptors and antagonist activity at 5HT-2A receptors. It has a bitter taste and poor-solubility in water. Thus, the main objective of the study is to formulate taste masked oral disintegrating tablets of aripiprazole by using inclusion complex beta-cyclodextrin to achieve a better dissolution rate and further improving the bioavailability of the drug. Oral disintegrating tablets were   prepared by direct compression method using  super disintegrant like crospovidone, croscarmellose sodium,  sodium starch glycolate and combinations of  cros-povidone with croscarmellose sodium, and crospovidone with sodium  starch glycolate in different concentrations. They were evaluated for the pre-compression parameters such as bulk density, compressibility, Hausner ratio and angle of repose. The prepared batches of tablets were evaluated for hardness, weight variation, thickness, friability, drug content, disintegration time, wetting time,    in vitro dispersion time, and in vitro dissolution profile. All these parameters were found to be satisfactory. Among all, the formulation F15 containing crospovidone 5% + cros-povidone with croscarmellose sodium 5% was considered to be the optimum formulation, which released nearly 99% of the drug in 20 minutes with a disintegration time of 10. 20 seconds. These studies indicate the viability and benefits of oral disintegrating tablets of aripiprazole. 

2019 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Sreenivas Patro Sisinthy ◽  
Shubbaneswarei Selladurai

Objective: The objective of this research was to formulate cinnarizine tablets using the liquid-solid compact technique to enhance its solubility and dissolution rate.Methods: Cinnarizine liquid-solid compacts were formulated using propylene glycol as the non-volatile solvent, Neusilin US2 as the carrier material, Aerosil 200 as the coating material and croscarmellose sodium as the disintegrant. The interaction between drug and excipients were characterized by Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies. Different batches of liquid, solid compacts were prepared by using varying carrier-coating excipient ratio and different concentration of liquid medication. Flow parameters such as bulk density, tapped density, Carr’s Index, Hausner’s Ratio as well as an angle of repose were used to test the flowability of the powder blend. The liquid-solid compacts were produced by direct compression method and were evaluated for tests such as weight variation, drug content, hardness, thickness, friability, wetting time, disintegration time as well as the in vitro dissolution studies.Results: The results of the preformulation studies of liquisolid compacts showed acceptable flow properties. The results of FTIR and DSC studies showed that there is no drug-excipient interactions. The different R values and concentrations were found to have a marked effect on the dissolution profile. Formulations with higher carrier: coating ratio (R-value) and lower drug concentrations displayed a better dissolution profile. The percentage of drug release of F3 with an R-value of 20 and a drug concentration of 10% was found to be 88.11% when compared to the conventional marketed tablet which released only 44.07% at the end of 2 h.Conclusion: From this research, it is inferred that liquid-solid technique is a promising and effective approach that can be used to enhance the dissolution rate of cinnarizine.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


2021 ◽  
Vol 11 (5) ◽  
pp. 115-120
Author(s):  
Kritika Rai ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

Orally disintegrating tablets (ODT) disintegrate quickly with saliva when administered into the oral cavity and taken without water or chewed. ODT are easy to take for children and the elderly, who may experience difficultly in taking ordinary oral preparations such as tablets, capsules, and powders.  The ODT threes substantial benefits for the patient (or elder) who cannot swallow (Dysphagia), or who is not permitted water intake due to disease. The reason of the current research was to prepare taste masking oral disintegrating tablets of poorly soluble lornoxicam (LXM) by direct compression technique using Kyron T-114 (cation exchange resin) as a taste masking agent. With in various ratios the Drug-resin of 1:4 was established to present best taste masking. The superdisintegrants used in formulation are croscarmellose sodium and cross povidone. Among these croscarmellose sodium demonstrated superior drug release. The tablets were evaluated for friability, weight variation, wetting time, hardness, disintegration time and uniformity of content. Optimized formulations were evaluated for in vitro dissolution test. Amongst all the formulations F-6 was found to be most successful tablets prepared by this technique had disintegration time of 30sec and % CDR 94.78 within 30min. Hence, this advance can be utilized for taste masking of bitter pharmaceutical ingredients leading to superior patient compliance. Keywords: Oral disintegration tablets, Lornoxicam, Kyron T-114, Superdisintegrants, Direct Compression.


2021 ◽  
Vol 10 (1) ◽  
pp. 59-67
Author(s):  
Mahipal Shakkarwal ◽  
Dr. Mukesh Sharma ◽  
Dr. Ram Garg ◽  
Shankar Lal Soni ◽  
Gopal Kumar Paswan ◽  
...  

The demands for fast dissolving tablets have received ever increasing day by day during the last 10-15 years for the onset of action. In the present study, the effect of superdisintegrant was compared with synthetic super disintegrants and other conventional super disintegrants in the of fast dissolving tablet formulation of Meclofenamate. Meclofenamate is an antihypertensive drug and in case of hypertension immediate treatment is required so the proposed investigation is totally based to provide the suitable treatment for hypertension. In the present work 9 formulations of Fast dissolving tablets of Cilnidipine were prepared by using Synthesized Co-proceed was evaluated and compiles with the official standards, parameters and specifications. Various formulations were prepared using four different superdisintegrant namely- kyron T-304, sodium starch glycolate, cross carmelose sodium with three concentrations (2%, 4%, 6%) by direct compression method. The blend was evaluated for pre-compression parameters like Angle of repose , bulk density , tapped density , and then tablet  evaluated post-compression parameters like thickness , drug content , hardness , weight variation  , wetting time , friability , disintegration time , dissolution time, drug release study. Formulation A8 showed the lowest disintegration time and in-vitro dissolution studies recorded that formulation A8 showed 98.64% drug release at the end of 3 minutes. The best formulations were also found to be stable and optimized formulations were subjected to the stability studies as per ICH guideline and standards.


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


Author(s):  
Rosy Fatema ◽  
Sumaiya Khan ◽  
A. S. M. Roknuzzaman ◽  
Ramisa Anjum ◽  
Nishat Jahan

Loratadine, a second generation H1-receptor antagonist, works by blocking the action of histamine and is widely prescribed for itching, runny nose, watery eyes, and sneezing from "hay fever" and other allergic conditions. To ensure quality the main requirements for a medicinal product are safety, potency, efficacy and stability. This research work aimed to compare and assess the quality levels of different local brands of loratadine tablets available in the drug market of Bangladesh. Six different brands of loratadine 10 mg tablet manufactured by the local companies were used for the analysis. The evaluation was performed through the determination of weight variation, hardness, friability, percent potency, disintegration time, and dissolution profile in accordance with USP-NF specifications. All brands showed acceptable weight variation and % friability. The percent potency for tested samples by UV method ranges from 97.02%-108%, showing none of the brands contains less than 90% of the active principle as per the specification. The result of the physical and chemical studies, such as in-vitro dissolution, disintegration, hardness, etc., has been found to differ but lie within the specified limit. After analyzing the data obtained from the tests, it can be claimed that loratadine 10 mg tablets manufactured and marketed by several local companies in Bangladesh meet the quality standard required to achieve the desired therapeutic outcomes.


2013 ◽  
Vol 16 (1) ◽  
pp. 1-9
Author(s):  
Shahriar Ahmed ◽  
Mehrina Nazmi ◽  
Ikramul Hasan ◽  
Sabiha Sultana ◽  
Shimul Haldar ◽  
...  

Fexofenadine HCl immediate release tablets were designed to increase the dissolution rate by using superdisintegrants. Different formulations of Fexofenadine HCl were prepared by direct compression method. These formulations were evaluated for hardness, thickness, friability, weight variation, disintegration time, and in vitro dissolution study. The drug release from the formulations were studied according to USP specification (USP paddle method at 50 rpm for 60 minutes) maintaining the temperature to 37°C. Sodium starch glycolate, cross carmellose sodium, crospovidone (kollidon CL), ludiflash and xanthan gum were used in 3%, 6% and 8% concentrations as superdisintegrants. Thus, the ratio of superdisintegrants was changed whereas all the other excipients as well as the active drug (Fexofenadine HCl) remained same in every formulation. Here, 0.001N HCl was used as dissolution medium according to USP and absorbances were determined by using UV spectrophotometer at 217 nm. The F-3 and F-6 formulation prepared by 8% of Sodium starch glycolate and 8% of Cross carmellose sodium showed 99.99% drug release within 30 minutes and 45 minutes, respectively. The disintegration times of F-3 and F-6 formulation were within 9 seconds. The interactions between drug and excipients were characterized by FTIR spectroscopic study. DOI: http://dx.doi.org/10.3329/bpj.v16i1.14483 Bangladesh Pharmaceutical Journal 16(1): 1-9, 2013


2020 ◽  
Vol 13 (5) ◽  
pp. 100
Author(s):  
Blasco Alejandro ◽  
Torrado Guillermo ◽  
Peña M Ángeles

This work proposes the design of novel oral disintegrating tablets (ODTs) of loperamide HCl with special emphasis on disintegration and dissolution studies. The main goal was augmenting the adherence to treatment of diseases which happen with diarrhea in soldiers who are exposed to diverse kinds of hostile environments. Optimized orally disintegrating tablets were prepared by the direct compression method from galenic development to the industrial scale technique, thanks to strategic and support actions between the Spanish Army Force Lab and the Department of Biomedical Sciences (UAH). The results show that loperamide HCl ODT offers a rapid beginning of action and improvement in the bioavailability of poorly absorbed drugs. The manufactured ODTs complied with the pharmacopeia guidelines regarding hardness, weight variation, thickness, friability, drug content, wetting time, percentage of water absorption, disintegration time, and in vitro dissolution profile. Drug compatibility with excipients was checked by DSC, FTIR, and SEM studies.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (09) ◽  
pp. 13-20
Author(s):  
V Arora ◽  
◽  
S Kumar ◽  
P. B Mishra ◽  
N. Vashisht

In present research work, taste masked Mouth Dissolving Tablets (MDTs) of Ranitidine Hydrochloride were designed with a view to enhance the patient compliance and provide a quick onset of action. Taste masking of the drug was done by formation of complex with β cyclodextrin. Tablets were prepared by direct compression, using superdisintegrants like crosscarmellose sodium and crosspovidone in different proportion and evaluated for the pre-compression parameters such as bulk density, compressibility, angle of repose etc. In view of the better taste palatability of such a bitter API, taste masking was carried out via making the cyclodextrin complex and sucralose was used as the sweetener to impart a palatable taste to the formulation. The prepared batches of tablets were evaluated for hardness, weight variation, friability, drug content, disintegration time and in vitro dissolution profile and found satisfactory. Among all, the formulation F7 containing 5% w/w proportion of both crosscarmellose sodium and crosspovidone was considered to be best formulation, which disintegrated completely in 19 seconds and released up to 98.38% of the drug.


Sign in / Sign up

Export Citation Format

Share Document