scholarly journals On the world ocean circulation. Volume I, Some global features/North Atlantic circulation

Author(s):  
William J. Schmitz
2007 ◽  
Vol 37 (2) ◽  
pp. 313-337 ◽  
Author(s):  
A. Köhl ◽  
D. Stammer ◽  
B. Cornuelle

Abstract An estimate of the time-varying global ocean circulation for the period 1992–2002 was obtained by combining most of the World Ocean Circulation Experiment (WOCE) ocean datasets with a general circulation model on a 1° horizontal grid. The estimate exactly satisfies the model equations without artificial sources or sinks of momentum, heat, and freshwater. To bring the model into agreement with observations, its initial temperature and salinity conditions were permitted to change, as were the time-dependent surface fluxes of momentum, heat, and freshwater. The estimation of these “control variables” is largely consistent with accepted uncertainties in the hydrographic climatology and meteorological analyses. The estimated time-mean horizontal transports of volume, heat, and freshwater, which were largely underestimated in the previous 2° optimization performed by Stammer et al., have converged with time-independent estimates from box inversions over most parts of the World Ocean. Trends in the model’s heat content are 7% larger than those reported by Levitus and correspond to a global net heat uptake of about 1.1 W m−2 over the model domain. The associated model trend in sea surface height over the estimation period resembles the observations from Ocean Topography Experiment (TOPEX)/Poseidon over most of the global ocean. Sea surface height changes in the model are primarily steric but show contributions from mass redistributions from the subpolar North Atlantic Ocean and the Southern Ocean to the subtropical Pacific Ocean gyres. Steric contributions are primarily temperature based but are partly compensated by salt variation. However, the North Atlantic and the Southern Ocean reveal a clear contribution of salt to large-scale sea level variations.


2019 ◽  
Vol 47 (3) ◽  
pp. 80-91
Author(s):  
V. G. Neiman

The main content of the work consists of certain systematization and addition of longexisting, but eventually deformed and partly lost qualitative ideas about the role of thermal and wind factors that determine the physical mechanism of the World Ocean’s General Circulation System (OGCS). It is noted that the conceptual foundations of the theory of the OGCS in one form or another are contained in the works of many well-known hydrophysicists of the last century, but the aggregate, logically coherent description of the key factors determining the physical model of the OGCS in the public literature is not so easy to find. An attempt is made to clarify and concretize some general ideas about the two key blocks that form the basis of an adequate physical model of the system of oceanic water masses motion in a climatic scale. Attention is drawn to the fact that when analyzing the OGCS it is necessary to take into account not only immediate but also indirect effects of thermal and wind factors on the ocean surface. In conclusion, it is noted that, in the end, by the uneven flow of heat to the surface of the ocean can be explained the nature of both external and almost all internal factors, in one way or another contributing to the excitation of the general, or climatic, ocean circulation.


Ocean Science ◽  
2012 ◽  
Vol 8 (6) ◽  
pp. 1123-1134 ◽  
Author(s):  
T. J. McDougall ◽  
D. R. Jackett ◽  
F. J. Millero ◽  
R. Pawlowicz ◽  
P. M. Barker

Abstract. The International Thermodynamic Equation of Seawater – 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg−1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).


Nature ◽  
1985 ◽  
Vol 314 (6011) ◽  
pp. 501-511 ◽  
Author(s):  
J. D. Woods

Sign in / Sign up

Export Citation Format

Share Document