scholarly journals Biomass historic CMIP5 data - mean picophytoplankton surface biomass estimated for climate models under the Historical scenario

Author(s):  
Adam Martiny ◽  
Pedro Flombaum
2019 ◽  
Author(s):  
Hamed D. Ibrahim

North and South Atlantic lateral volume exchange is a key component of the Atlantic Meridional Overturning Circulation (AMOC) embedded in Earth’s climate. Northward AMOC heat transport within this exchange mitigates the large heat loss to the atmosphere in the northern North Atlantic. Because of inadequate climate data, observational basin-scale studies of net interbasin exchange between the North and South Atlantic have been limited. Here ten independent climate datasets, five satellite-derived and five analyses, are synthesized to show that North and South Atlantic climatological net lateral volume exchange is partitioned into two seasonal regimes. From late-May to late-November, net lateral volume flux is from the North to the South Atlantic; whereas from late-November to late-May, net lateral volume flux is from the South to the North Atlantic. This climatological characterization offers a framework for assessing seasonal variations in these basins and provides a constraint for climate models that simulate AMOC dynamics.


2020 ◽  
Author(s):  
Bryan J Pesta ◽  
John Fuerst ◽  
Emil O. W. Kirkegaard

Using a sample of ~3,100 U.S. counties, we tested geoclimatic explanations for why cognitive ability varies across geography. These models posit that geoclimatic factors will strongly predict cognitive ability across geography, even when a variety of common controls appear in the regression equations. Our results generally do not support UV radiation (UVR) based or other geoclimatic models. Specifically, although UVR alone predicted cognitive ability at the U.S. county-level (β = -.33), its validity was markedly reduced in the presence of climatic and demographic covariates (β = -.16), and was reduced even further with a spatial lag (β = -.10). For climate models, average temperature remained a significant predictor in the regression equation containing a spatial lag (β = .35). However, the effect was in the wrong direction relative to typical cold weather hypotheses. Moreover, when we ran the analyses separately by race/ethnicity, no consistent pattern appeared in the models containing the spatial lag. Analyses of gap sizes across counties were also generally inconsistent with predictions from the UVR model. Instead, results seemed to provide support for compositional models.


2011 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Antonella Sanna ◽  
Edoardo Bucchignani ◽  
Myriam Montesarchio

2020 ◽  
Vol 98 (6) ◽  
pp. 1097-1127
Author(s):  
Hideaki KAWAI ◽  
Shoichi SHIGE
Keyword(s):  

2003 ◽  
Vol 34 (5) ◽  
pp. 399-412 ◽  
Author(s):  
M. Rummukainen ◽  
J. Räisänen ◽  
D. Bjørge ◽  
J.H. Christensen ◽  
O.B. Christensen ◽  
...  

According to global climate projections, a substantial global climate change will occur during the next decades, under the assumption of continuous anthropogenic climate forcing. Global models, although fundamental in simulating the response of the climate system to anthropogenic forcing are typically geographically too coarse to well represent many regional or local features. In the Nordic region, climate studies are conducted in each of the Nordic countries to prepare regional climate projections with more detail than in global ones. Results so far indicate larger temperature changes in the Nordic region than in the global mean, regional increases and decreases in net precipitation, longer growing season, shorter snow season etc. These in turn affect runoff, snowpack, groundwater, soil frost and moisture, and thus hydropower production potential, flooding risks etc. Regional climate models do not yet fully incorporate hydrology. Water resources studies are carried out off-line using hydrological models. This requires archived meteorological output from climate models. This paper discusses Nordic regional climate scenarios for use in regional water resources studies. Potential end-users of water resources scenarios are the hydropower industry, dam safety instances and planners of other lasting infrastructure exposed to precipitation, river flows and flooding.


Author(s):  
Koujiro TSUCHIDA ◽  
Makoto TAMURA ◽  
Naoko KUMANO ◽  
Eiji MASUNAGA ◽  
Hiromune YOKOKI

Sign in / Sign up

Export Citation Format

Share Document