scholarly journals Task lighting effects on office worker satisfaction and performance, and energy efficiency

Author(s):  
Guy Newsham
Author(s):  
Guy Newsham ◽  
Chantal Arsenault ◽  
Jennifer Veitch ◽  
Anna Maria Tosco ◽  
Cara Duval

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


2014 ◽  
Vol 495 ◽  
pp. 012030 ◽  
Author(s):  
N H Mustafa ◽  
M N Husain ◽  
M Z A Abd Aziz ◽  
M A Othman ◽  
F Malek

2021 ◽  
Author(s):  
Ramkumar Iyer ◽  
Zhichao Chen ◽  
PS SATYANARAYANA ◽  
ANTARA BHATTACHARJEE ◽  
NAVNEET JHA ◽  
...  

Author(s):  
Miguel Bordallo López

Computer vision can be used to increase the interactivity of existing and new camera-based applications. It can be used to build novel interaction methods and user interfaces. The computing and sensing needs of this kind of applications require a careful balance between quality and performance, a practical trade-off. This chapter shows the importance of using all the available resources to hide application latency and maximize computational throughput. The experience gained during the developing of interactive applications is utilized to characterize the constraints imposed by the mobile environment, discussing the most important design goals: high performance and low power consumption. In addition, this chapter discusses the use of heterogeneous computing via asymmetric multiprocessing to improve the throughput and energy efficiency of interactive vision-based applications.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4779
Author(s):  
Sorin Buzura ◽  
Bogdan Iancu ◽  
Vasile Dadarlat ◽  
Adrian Peculea ◽  
Emil Cebuc

Software-defined wireless sensor networking (SDWSN) is an emerging networking architecture which is envisioned to become the main enabler for the internet of things (IoT). In this architecture, the sensors plane is managed by a control plane. With this separation, the network management is facilitated, and performance is improved in dynamic environments. One of the main issues a sensor environment is facing is the limited lifetime of network devices influenced by high levels of energy consumption. The current work proposes a system design which aims to improve the energy efficiency in an SDWSN by combining the concepts of content awareness and adaptive data broadcast. The purpose is to increase the sensors’ lifespan by reducing the number of generated data packets in the resource-constrained sensors plane of the network. The system has a distributed management approach, with content awareness being implemented at the individual programmable sensor level and the adaptive data broadcast being performed in the control plane. Several simulations were run on historical weather and the results show a significant decrease in network traffic. Compared to similar work in this area which focuses on improving energy efficiency with complex algorithms for routing, clustering, or caching, the current proposal employs simple computing procedures on each network device with a high impact on the overall network performance.


Sign in / Sign up

Export Citation Format

Share Document