scholarly journals CREATING A PROLONGED FORM OF ACETYLSALICYLIC ACID: AN EXPERIMENTAL APPROACH

Author(s):  
V. I. Sevastianov ◽  
V. K. Popov ◽  
V. Yu. Belov ◽  
S. V. Kursakov ◽  
E. N. Antonov ◽  
...  

Aim.The development of a prolonged form of acetylsalicylic acid (ASA) encapsulated into polymeric highly porous microcarriers using supercritical carbon dioxide and the subsequent study of ASA release kinetics in vitro and in vivo using high-performance liquid chromatographic (HPLC).Materials and methods.As polymeric carriers for ASA encapsulation amorphous D,L-polylactides (PLA) and polylactoglycolides (PLGA) of PURASORB PDL02 and PDLG7502 series (PURAC Biochem BV, Netherlands) were selected. The ASA encapsulation was performed using the PGSS (Particles from Gas Saturated Solutions) method of supercritical fl uid formation of microfi ne (20–50 μm) bioresorbable powders of aliphatic polyethers containing 10 wt.% ASA. The release kinetics of ASA from polymeric microparticles into saline solution as well as pharmacokinetic studies in vivo (rabbits) were registered by HPLC.Results.A method of quantitative determination of ASA and its main metabolite salicylic acid (SA) in model solution and blood plasma by HPLC-UV detection with enhanced sample preparation and selectivity was developed. The method’s analytical range without accounting for dilution was 0.05–5.0 μg/ml for model solution and 0.2–10.0 μg/ml for blood plasma; the degree of extraction of ASA SA from blood plasma – 95.8 and 98.1%, respectively. It was demonstrated that the amount of ASA released from PLA during the fi rst 4 h exceeds the mass of ASA released from PLGA by approximately 25% which may serve as a justifi cation for the selection of PLGA as a carrier for the creation of a prolonged form of ASA. Pharmacokinetic studies (rabbits, n = 3) demonstrated a gradual release of ASA from PLGA microparticles during 24 h after intramuscular implantation of encapsulated form of ASA at the dose of 10 mg/kg.Conclusion.Test samples of highly porous microfi ne powders of PLGA obtained by PGSS containing up to 10 wt.% ASA may serve as source prototypes for the development and creation on their basis of a prolonged form of ASA.

2021 ◽  
Vol 62 (2) ◽  
pp. 144-162
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Introduction: The drawbacks assosiated with oral administration of drugscan be controlled or minimized by gastro retentive formulations that remain buoyant within the stomach for an extended time by providing prolonged gastric retention and releasethe drug in an exceedingly extended manner thereby improving bioavailability. The current research was to develop and optimize Domperidone and Famotidine floating tablets with extended release by Quality by Design approach. Method: Based on QTPP (Quality Target Product Profile), CQAs (Critical Quality Attributes)wereidentified. Risk analysis by the evaluation of formulation and process parameters showed that optimizing the levels of polymers could reduce high risk to achieve the target profile. A 23factor experimental design with midpoints was selected for statistical analysis and optimization. Results: HPMC K100 and Carbopol 934P had a positive effect while ethyl cellulose demonstrated a negative effect on the selected responses. Drug release kinetics followed the first-order release with Higuchi diffusion and Fickian diffusion. Optimized formula satisfying all the required parameters was selected and evaluated. The predicted response values were in close agreement with experimental response values. Abdominal X-ray imaging after oral administration of the tablets on a healthy rabbit’s stomach confirmed the extended floating behavior with shorter lag time. In vivo, pharmacokinetic studies in rabbits revealed that the optimized formulation exhibited prolonged drug release with enhanced Cmax, tmax, AUCo-t, and t1/2 of an optimized product when compared to the marketed product. Conclusions: It has been concluded that the application of Quality by Design in the formulation and optimization reduced the number of trials to produce a cost-effective formula.


2021 ◽  
Vol 16 ◽  
Author(s):  
Mounika Chidurala ◽  
Raveendra Reddy J

Background: The present research aimed to develop and optimize extended-release floating tablets of Sacubitril and Valsartan through Quality by Design (QbD) approach. Risk analysis by formulation assessment and process parameters showed that optimizing the levels of the polymer will minimize high risk to meet the target profile. A two (2) level three (3) full factorial experimental design along with midpoints was carefully chosen for optimization and statistical analysis. Based on the literature, the independent and dependent variables were selected. Results: HPMC K100, Carbopol 934P had a positive effect, whereas Ethylcellulose had a negative effect on Floating time, drug release at 2 h, drug release at 12 h and, 50% responses. Drug release kinetics followed the first-order release with Higuchi and Fickian diffusion. Contour and overlay plots were utilized for an assortment of design space and optimized formula. ANOVA results of all the factors exhibited significance at p<0.05. Abdominal X-ray imaging of the optimized tablets on healthy rabbit’s stomach confirmed the floating behavior for more than 12 h. In vivo pharmacokinetic studies in rabbits showed that the optimized formulation exhibited prolonged and extended drug release with improved Cmax, tmax, AUCo-t, and t1/2 of test product when compared to marketed product. IVIVC model was developed by using dissolution data of in vitro and pharmacokinetics data of in-vivo by de-convolution method (Wagner-Nelson method). Conclusion: The Quality by Design implementation in the formulation and optimization abridged the number of trials to produce a cost-effective formula. In vivo studies confirmed that the formula was successfully developed with extended floating time (12 h) and drug release by risk analysis and experimental designs. Level A correlation was observed which confirmed a good correlation between in vitro and in vivo data.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 1560-1560
Author(s):  
Elisabeth I. Heath ◽  
Clara Hwang ◽  
Michael L. Cher ◽  
Lance K. Heilbrun ◽  
Isaac Powell ◽  
...  

1560 Background: Consumption of cruciferous vegetables is associated with decreased risk of prostate cancer (PCa). 3,3’-diindolylmethane (DIM), an in vivo active compound formed after consumption of cruciferous vegetables, down-regulates the AR, and causes its nuclear exclusion which results in in vitro growth arrest and apoptosis of PCa cells. We conducted a biomarker trial evaluating BR-DIM in pre-prostatectomy patients with the primary objective of measuring DIM levels in prostate tissue and in plasma. Methods: Patients with organ-confined PCa who were candidates for surgery were treated with BR-DIM at a dose of 225 mg orally twice daily for a minimum of 14 days. Patients did not receive any androgen deprivation therapy. Patients received their last dose of BR-DIM the day before surgery. Blood samples for DIM levels were collected pre-treatment and just prior to surgery. DIM concentration was measured in the plasma and in prostate tissue specimens using a validated high-performance liquid chromatographic method with tandem mass spectrometric detection. AR was evaluated by immunohistochemistry (IHC). Results: 36 patients were treated at 2 institutions. The 26 evaluable patients had median age of 60 years (range 41 - 76), 14 were Caucasian, and 10 were African American. Reasons for inevaluability included change in surgery date (n=4), inadequate BR-DIM treatment (2), withdrawal from study (2), canceled surgery (1), and other (1). Toxicity was minimal; only two patients with grade 3 headache. Post dosing, DIM was found at a mean trough level of 10.2 ng/ml (range, 0.5 to 24.7) and 12.3 ng/gm of tissue (range, 0.0 to 26.8) in plasma and in prostate tissue, respectively. PSA levels had a slightly downward trend after BR-DIM treatment. In 18 of 20 evaluable PCa specimens, IHC showed nuclear exclusion of AR. Conclusions: BR-DIM was well tolerated, and DIM was detected in both plasma and prostate tissues at ~12 h post dosing. Nuclear exclusion of AR was found in 90% of PCa specimens post BR-DIM dosing, suggesting in vivo inactivation of AR activity. PSA levels were slightly reduced overall. Accrual is ongoing and nearly complete. Additional studies with BR-DIM in PCa are warranted.


Author(s):  
Revathi Mannam ◽  
Indira Muzib Yallamalli

Objective: The objective of the present research work is to carry out the pharmacokinetic studies of optimized matrix membrane moderatedtransdermal patch of bosentan monohydrate.Materials and Methods: The matrix membrane moderated transdermal system was formulated using HPMC, HPMC K4M and E RLPO. In vitrodiffusion studies were carried out using modified Franz diffusion cell and for the optimized transdermal patch, pharmacokinetic studies were carriedout using New Zealand male rabbits. Plasma samples were quantified using high-performance liquid chromatography.Results: The in vitro diffusion studies revealed that formulation F3 with HPMC K4M and E RLPO had controlled release up to 28 hrs, and a maximumof 95.02±2.68% drug was released. The release kinetics followed mixed order non-Fickian diffusion. The pharmacokinetic studies of the optimizedpatch revealed controlled release up to 45 hrs where a 2.2-fold increase in area under curve (AUC) and 3.8 times increase in mean residence time(MRT) were observed compared to oral route. The results were appeared to be significant at p≤0.05. The variation in half-life was found to be notstatistically significant when compared between oral and transdermal routes.Conclusion: The pharmacokinetic results concluded that the matrix membrane moderated transdermal system with extended AUC and MRT canenhance the bioavailability of bosentan monohydrate by minimizing the drug-related side effects in oral route.


2020 ◽  
Vol 7 (2) ◽  
pp. 191666
Author(s):  
Lu Yu ◽  
Xu Chen ◽  
Wen Sheng Zhang ◽  
Liang Zheng ◽  
Wen Wen Xu ◽  
...  

ET-26-HCl, a novel anaesthetic agent with promising pharmacological properties, lacks extensive studies on pharmacokinetics and disposition in vitro and in vivo . In this study, we investigated the metabolic stability, metabolite production and plasma protein binding (PPB) of ET-26-HCl along with its tissue distribution, excretion and pharmacokinetics in animals after intravenous administration. Ultra-high performance liquid chromatography–tandem quadrupole time-of-flight mass spectrometry identified a total of eight new metabolites after ET-26-HCl biotransformation in liver microsomes from different species. A hypothetical cytochrome P450-metabolic pathway including dehydrogenation, hydroxylation and demethylation was proposed. The PPB rate was highest in mouse and lowest in human. After intravenous administration, ET-26-HCl distributed rapidly to all tissues in rats and beagle dogs, with the highest concentrations in fat and liver. High concentrations of ET-26-acid, a major hydroxylation metabolite of ET-26-HCl, were found in liver, plasma and kidney. Almost complete clearance of ET-26-HCl from plasma occurred within 4 h after administration. Only a small fraction of the parent compound and its acid form were excreted via the urine and faeces. Taken together, the results added to a better understanding of the metabolic and pharmacokinetic properties of ET-26-HCl, which may contribute to the further development of this drug.


Author(s):  
Ashok K Singh ◽  
Vinit Raj ◽  
Amit Rai ◽  
Amit K Keshari ◽  
Pranesh Kumar ◽  
...  

Objective: Recently, we reported newly synthesized 5H-benzo[2,3][1,4]oxazepino[5,6-b]indole) derivatives and proved their cytotoxicity against hepatocellular carcinoma specific Hep-G2 cell lines. We attempted herein to describe a reversed-phase high-performance liquid chromatographic method for the determination of three most active compounds 6a, 10a, and 15a in rat plasma to predict their pharmacokinetics parameters before in vivo study.Methods: A rapid and sensitive reversed-phase high-performance liquid chromatographic was employed for the determination of 6a, 10a, and 15a in rat plasma. Each compound was separated by a gradient elution of acetonitrile and water with 1 mL/min flow rate. The detector was set at 270, 285, and 275 nm for 6a, 10a, and 15a and the recorded elution times were 2.00, 2.87, and 1.88 min, respectively.Results: The calibration curve was linear with R2 of 0.938, 0.875, and 0.923 over the concentration range of 0.1–50 μg/mL. The inter- and intra-day variations of the assay were lower than 12.26%; the average recovery of 6a, 10a, and 15a was 97.31, 92.56, and 95.23 % with relative standard deviation of 2.12%, 3.25%, and 2.28%, respectively. The Cmax and Tmax were ~ 46.34, 18.56, and 25.65 μg/mL and 2.0, 4.0, and 4.0 h for 6a, 10a, and 15a, respectively, which indicate a robust method of detection in the present experiment.Conclusion: The study suggests that all of the three compounds have a lower rate of absorption, higher volume of distribution, and lower clearance rate, indicating good therapeutic response for in vivo activity. 


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Siddhartha Maity ◽  
Amit Kundu ◽  
Sanmoy Karmakar ◽  
Biswanath Sa

This study was performed to assess and correlate in vitro drug release with in vivo absorption of prednisolone (PDL) from a colon-targeted tablet prepared by compression coating of core tablet. In vivo drug absorption study was conducted using a high performance liquid chromatographic (HPLC) method, which was developed and validated for the estimation of PDL in rabbit plasma. The calibration curve showed linearity in the concentration range of 0.05 to 50 μg/mL with the correlation coefficient (r) of 0.999. The method was specific and sensitive with the limit of detection (LOD) and lower limit of quantification (LLOQ) of 31.89±1.10 ng/mL and 96.63±3.32 ng/mL, respectively. The extraction recovery (ER) of PDL from three different levels of quality control (QC) samples ranged from 98.18% to 103.54%. In vitro drug release study revealed that less than 10% drug was released in 6.34 h and almost complete (98.64%) drug release was achieved in the following 6 h. In vivo drug absorption study demonstrated lower values of Cmax, AUCtotal, and protracted Tmax from compression-coated tablet. The results confirmed the maximum release of drug in the colon while minimizing release in the upper gastrointestinal tract (GIT). An excellent in vitro and in vivo correlation (IVIVC) was also achieved after considering the lag time.


Sign in / Sign up

Export Citation Format

Share Document