scholarly journals NOTE ON SUPER \((a,1)\)–\(P_3\)–ANTIMAGIC TOTAL LABELING OF STAR \(S_n\)

2021 ◽  
Vol 7 (2) ◽  
pp. 86
Author(s):  
S. Rajkumar ◽  
M. Nalliah ◽  
Madhu Venkataraman

Let \(G=(V, E)\) be a simple graph and \(H\) be a subgraph of \(G\). Then \(G\) admits an \(H\)-covering, if every edge in \(E(G)\) belongs to at least one subgraph of \(G\) that is isomorphic to \(H\). An \((a,d)-H\)-antimagic total labeling of \(G\) is bijection \(f:V(G)\cup E(G)\rightarrow \{1, 2, 3,\dots, |V(G)| + |E(G)|\}\) such that for all subgraphs \(H'\) of \(G\) isomorphic to \(H\), the \(H'\) weights \(w(H') =\sum_{v\in V(H')} f (v) + \sum_{e\in E(H')} f (e)\) constitute an arithmetic progression \(\{a, a + d, a + 2d, \dots , a + (n- 1)d\}\), where \(a\) and \(d\) are positive integers and \(n\) is the number of subgraphs of \(G\) isomorphic to \(H\). The labeling \(f\) is called a super \((a, d)-H\)-antimagic total labeling if \(f(V(G))=\{1, 2, 3,\dots, |V(G)|\}.\) In [5], David Laurence and Kathiresan posed a problem that characterizes the super \( (a, 1)-P_{3}\)-antimagic total labeling of Star \(S_{n},\) where \(n=6,7,8,9.\)  In this paper, we completely solved this problem.

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 605
Author(s):  
Martin Bača ◽  
Zuzana Kimáková ◽  
Marcela Lascsáková ◽  
Andrea Semaničová-Feňovčíková

For a simple graph G with no isolated edges and at most, one isolated vertex, a labeling φ:E(G)→{1,2,…,k} of positive integers to the edges of G is called irregular if the weights of the vertices, defined as wtφ(v)=∑u∈N(v)φ(uv), are all different. The irregularity strength of a graph G is known as the maximal integer k, minimized over all irregular labelings, and is set to ∞ if no such labeling exists. In this paper, we determine the exact value of the irregularity strength and the modular irregularity strength of fan graphs.


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2021 ◽  
Vol 27 (2) ◽  
pp. 101-110
Author(s):  
José Luis Cereceda

In this paper, we obtain a new formula for the sums of k-th powers of the first n positive integers, Sk(n), that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Furthermore, we express the Bernoulli polynomials in terms of hyperharmonic polynomials and Stirling numbers of the second kind. Finally, we extend the obtained formula for Sk(n) to negative values of n.


Author(s):  
Nur Inayah

AbstractA decomposition of a graph P into a family Q consisting of isomorphic copies of a graph Q is (a,b)-Q-antimagic if there is a bijection φ:V(P)∪E(P)→{1,2,3,4…,v_P+e_P} such that for all subgraphs Q’ isomorphic to Q,   the Q-weightsφ(Q’ )=∑_(v∈V(Q^' ))▒φ(v) + ∑_(e∈E(Q^'))▒〖φ(e)〗constitute an arithmetic progression a,a + b,a + 2b,…,a + (r - 1)b where a and b are positive integers and r is the number of subgraphs of P isomorphic to Q. In this article, we prove the existence of a (a,b)-P_4-antimagic  decomposition of a generalized Peterzen graph GPz(n,3) for several values of b.Keywords: covering; decomposition; antimagic; generalized Peterzen. AbstrakSuatu dekomposisi dari suatu graf P ke dalam suatu famili Q yang terdiri dari salinan isomorfik dari graf Q dikatakan (a,b)-Q-antiajaib jika terdapat pemetaaan bijektif φ:V(P)∪E(P)→{1,2,3,4…,v_P+e_P} sedemikian sehingga semua subgraf Q’ yang isomorfik ke Q, dengan bobot-Q sebagai berikutφ(Q’ )=∑_(v∈V(Q^' ))▒φ(v) + ∑_(e∈E(Q^'))▒〖φ(e)〗yang membentuk suatu barisan aritmatika yaitu a,a + b,a + 2b,…,a + (r - 1)b dengan a dan b adalah bilangan bulat positif dan r adalah banyaknya subgraf dari P yang isomorfik ke Q. Pada artikel ini, kami membuktikan eksistensi (a,b)-P_4-antiajaib dekomposisi dari graf generalized Peterzen GPz(n,3) untuk beberapa nilai b.Kata kunci: selimut; dekomposisi; antiajaib; generalized Peterzen.


2020 ◽  
Vol 12 (4) ◽  
pp. 537-543
Author(s):  
A. Rana

A labeling of a graph is a mapping that maps some set of graph elements to a set of numbers (usually positive integers).  For a simple graph G = (V, E) with vertex set V and edge set E, a labeling  Φ: V ∪ E → {1, 2, ..., k} is called total k-labeling. The associated vertex weight of a vertex x∈ V under a total k-labeling  Φ is defined as wt(x) = Φ(x) + ∑y∈N(x) Φ(xy) where N(x) is the set of neighbors of the vertex x. A total k-labeling is defined to be a vertex irregular total labeling of a graph, if for every two different vertices x and y of G, wt(x)≠wt(y). The minimum k for which  a graph G has a vertex irregular total k-labeling is called the total vertex irregularity strength of G, tvs(G). In this paper, total vertex irregularity strength of interval graphs is studied. In particular, an efficient algorithm is designed to compute tvs of proper interval graphs and bounds of tvs is presented for interval graphs.


1970 ◽  
Vol 54 (388) ◽  
pp. 113-115
Author(s):  
R. L. Goodstein

We consider the problem of finding necessary and sufficient conditions for a positive integer to be the sum of an arithmetic progression of positive integers with a given common difference, starting with the case when the common difference is unity.


1981 ◽  
Vol 24 (1) ◽  
pp. 37-41 ◽  
Author(s):  
R. A. Smith ◽  
M. V. Subbarao

Let l and k be positive integers. Then for each integer n ≥ 1, define d(n; l, k) to be the number of (positive) divisors of n which lie in the arithmetic progression I mod k. Note that d(n;1,1) = d(n), the ordinary divisor function.


1969 ◽  
Vol 62 (8) ◽  
pp. 633-635
Author(s):  
William M. Waters

IF ONE considers the equation x2 + y2 = z2, where x, y, and z are positive integers in arithmetic progression, it is obvious that the primitive solution of this equation is {3, 4, 5} and that all solutions are of the form {3d, 4d, 5d}, where d represents the common difference of the arithmetic progression.


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


2001 ◽  
Vol 63 (1) ◽  
pp. 115-121 ◽  
Author(s):  
T. Bier ◽  
A. Y. M. Chin

Let A be a finite Abelian group written additively. For two positive integers k, l with k ≠ l, we say that a subset S ⊂ A is of type (k, l) or is a (k, l) -set if the equation x1 + x2 + … + xk − xk+1−… − xk+1 = 0 has no solution in the set S. In this paper we determine the largest possible cardinality of a (k, l)-set of the cyclic group ℤP where p is an odd prime. We also determine the number of (k, l)-sets of ℤp which are in arithmetic progression and have maximum cardinality.


Sign in / Sign up

Export Citation Format

Share Document