scholarly journals Another Antimagic Decomposition of Generalized Peterzen Graph

Author(s):  
Nur Inayah

AbstractA decomposition of a graph P into a family Q consisting of isomorphic copies of a graph Q is (a,b)-Q-antimagic if there is a bijection φ:V(P)∪E(P)→{1,2,3,4…,v_P+e_P} such that for all subgraphs Q’ isomorphic to Q,   the Q-weightsφ(Q’ )=∑_(v∈V(Q^' ))▒φ(v) + ∑_(e∈E(Q^'))▒〖φ(e)〗constitute an arithmetic progression a,a + b,a + 2b,…,a + (r - 1)b where a and b are positive integers and r is the number of subgraphs of P isomorphic to Q. In this article, we prove the existence of a (a,b)-P_4-antimagic  decomposition of a generalized Peterzen graph GPz(n,3) for several values of b.Keywords: covering; decomposition; antimagic; generalized Peterzen. AbstrakSuatu dekomposisi dari suatu graf P ke dalam suatu famili Q yang terdiri dari salinan isomorfik dari graf Q dikatakan (a,b)-Q-antiajaib jika terdapat pemetaaan bijektif φ:V(P)∪E(P)→{1,2,3,4…,v_P+e_P} sedemikian sehingga semua subgraf Q’ yang isomorfik ke Q, dengan bobot-Q sebagai berikutφ(Q’ )=∑_(v∈V(Q^' ))▒φ(v) + ∑_(e∈E(Q^'))▒〖φ(e)〗yang membentuk suatu barisan aritmatika yaitu a,a + b,a + 2b,…,a + (r - 1)b dengan a dan b adalah bilangan bulat positif dan r adalah banyaknya subgraf dari P yang isomorfik ke Q. Pada artikel ini, kami membuktikan eksistensi (a,b)-P_4-antiajaib dekomposisi dari graf generalized Peterzen GPz(n,3) untuk beberapa nilai b.Kata kunci: selimut; dekomposisi; antiajaib; generalized Peterzen.

2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2021 ◽  
Vol 27 (2) ◽  
pp. 101-110
Author(s):  
José Luis Cereceda

In this paper, we obtain a new formula for the sums of k-th powers of the first n positive integers, Sk(n), that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Furthermore, we express the Bernoulli polynomials in terms of hyperharmonic polynomials and Stirling numbers of the second kind. Finally, we extend the obtained formula for Sk(n) to negative values of n.


1970 ◽  
Vol 54 (388) ◽  
pp. 113-115
Author(s):  
R. L. Goodstein

We consider the problem of finding necessary and sufficient conditions for a positive integer to be the sum of an arithmetic progression of positive integers with a given common difference, starting with the case when the common difference is unity.


1981 ◽  
Vol 24 (1) ◽  
pp. 37-41 ◽  
Author(s):  
R. A. Smith ◽  
M. V. Subbarao

Let l and k be positive integers. Then for each integer n ≥ 1, define d(n; l, k) to be the number of (positive) divisors of n which lie in the arithmetic progression I mod k. Note that d(n;1,1) = d(n), the ordinary divisor function.


1969 ◽  
Vol 62 (8) ◽  
pp. 633-635
Author(s):  
William M. Waters

IF ONE considers the equation x2 + y2 = z2, where x, y, and z are positive integers in arithmetic progression, it is obvious that the primitive solution of this equation is {3, 4, 5} and that all solutions are of the form {3d, 4d, 5d}, where d represents the common difference of the arithmetic progression.


2014 ◽  
Vol 57 (3) ◽  
pp. 551-561 ◽  
Author(s):  
Daniel M. Kane ◽  
Scott Duke Kominers

AbstractFor relatively prime positive integers u0 and r, we consider the least common multiple Ln := lcm(u0, u1..., un) of the finite arithmetic progression . We derive new lower bounds on Ln that improve upon those obtained previously when either u0 or n is large. When r is prime, our best bound is sharp up to a factor of n + 1 for u0 properly chosen, and is also nearly sharp as n → ∞.


2001 ◽  
Vol 63 (1) ◽  
pp. 115-121 ◽  
Author(s):  
T. Bier ◽  
A. Y. M. Chin

Let A be a finite Abelian group written additively. For two positive integers k, l with k ≠ l, we say that a subset S ⊂ A is of type (k, l) or is a (k, l) -set if the equation x1 + x2 + … + xk − xk+1−… − xk+1 = 0 has no solution in the set S. In this paper we determine the largest possible cardinality of a (k, l)-set of the cyclic group ℤP where p is an odd prime. We also determine the number of (k, l)-sets of ℤp which are in arithmetic progression and have maximum cardinality.


1985 ◽  
Vol 8 (2) ◽  
pp. 283-302 ◽  
Author(s):  
Claudia A. Spiro

This paper is concerned with estimating the number of positive integers up to some bound (which tends to infinity), such that they have a fixed number of prime divisors, and lie in a given arithmetic progression. We obtain estimates which are uniform in the number of prime divisors, and at the same time, in the modulus of the arithmetic progression. These estimates take the form of a fixed but arbitrary number of main terms, followed by an error term.


2009 ◽  
Vol 05 (04) ◽  
pp. 641-665 ◽  
Author(s):  
P. MOREE ◽  
B. SURY

Given positive integers a,b,c and d such that c and d are coprime, we show that the primes p ≡ c ( mod d) dividing ak+bkfor some k ≥ 1 have a natural density and explicitly compute this density. We demonstrate our results by considering some claims of Fermat that he made in a 1641 letter to Mersenne.


10.37236/1660 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Jaroslaw Grytczuk

A sequence $u=u_{1}u_{2}...u_{n}$ is said to be nonrepetitive if no two adjacent blocks of $u$ are exactly the same. For instance, the sequence $a{\bf bcbc}ba$ contains a repetition $bcbc$, while $abcacbabcbac$ is nonrepetitive. A well known theorem of Thue asserts that there are arbitrarily long nonrepetitive sequences over the set $\{a,b,c\}$. This fact implies, via König's Infinity Lemma, the existence of an infinite ternary sequence without repetitions of any length. In this paper we consider a stronger property defined as follows. Let $k\geq 2$ be a fixed integer and let $C$ denote a set of colors (or symbols). A coloring $f:{\bf N}\rightarrow C$ of positive integers is said to be $k$-nonrepetitive if for every $r\geq 1$ each segment of $kr$ consecutive numbers contains a $k$-term rainbow arithmetic progression of difference $r$. In particular, among any $k$ consecutive blocks of the sequence $f=f(1)f(2)f(3)...$ no two are identical. By an application of the Lovász Local Lemma we show that the minimum number of colors in a $k$-nonrepetitive coloring is at most $2^{-1}e^{k(2k-1)/(k-1)^{2}}k^{2}(k-1)+1$. Clearly at least $k+1$ colors are needed but whether $O(k)$ suffices remains open. This and other types of nonrepetitiveness can be studied on other structures like graphs, lattices, Euclidean spaces, etc., as well. Unlike for the classical Thue sequences, in most of these situations non-constructive arguments seem to be unavoidable. A few of a range of open problems appearing in this area are presented at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document