scholarly journals Research on Trends in Extreme Weather Events and their Effects on Grapevine in Romanian Viticulture

Author(s):  
Georgeta Mihaela Bucur ◽  
Anca Cristina Babes

The aim of this work was to investigate the frequency and intensity of extreme weather events in various centers from Romania’s viticultural regions: winter frost, extreme temperatures during the growing season and summer droughts. Winter frost damaging the vine is a significant risk to grape production, mainly in the plains and lowlands to the foothills. The frequency of winter frost damaging the vine has increased during the last decades, in the context of climate change. Also, there has been found a significant increase in the number of hot days (Tmax > 30°C) and very hot days (Tmax > 35°C). The evolution of these extreme events was followed in Craiova, Constanta, Bucharest, Timisoara, Cluj-Napoca, Oradea and Iasi, between 1977 and 2015. The long term study (18 years) conducted in the experimental plantation of the University of Agronomic Sciences and Veterinary Medicine Bucharest revealed their influence on vine. During the last two decades, there has been registered a trend of increasing the frequency and intensity of winter frost, damaging vine (Tmin < -20°C), heat waves (number of days with Tmax > 30°C and > 35°C) and droughts that adversely affect viticulture, production and quality of grapes and wine. The highest warming trends were observed for northern viticultural regions (Transylvania and Moldavia) and for the seaside. Although the intensification of heat waves increases sugar accumulation in the berries, they trigger a significant reduction in grape production and in titrable acidity, requiring corrections and resulting in unbalanced wines. Meanwhile, droughts trigger production decrease. To avoid negative effects on vine, it is necessary to take measures, both on a short, medium and long term.

2018 ◽  
Author(s):  
Junxi Zhang ◽  
Yang Gao ◽  
Kun Luo ◽  
L. Ruby Leung ◽  
Yang Zhang ◽  
...  

Abstract. The Weather Research and Forecasting model with Chemistry (WRF/Chem) was used to study the effect of extreme weather events on ozone in US for historical (2001–2010) and future (2046–2055) periods under RCP8.5 scenario. During extreme weather events, including heat waves, atmospheric stagnation, and their compound events, ozone concentration is much higher compared to non-extreme events period. A striking enhancement of effect during compound events is revealed when heat wave and stagnation occur simultaneously and both high temperature and low wind speed promote the production of high ozone concentrations. In regions with high emissions, compound extreme events can shift the high-end tails of the probability density functions (PDFs) of ozone to even higher values to generate extreme ozone episodes. In regions with low emissions, extreme events can still increase high ozone frequency but the high-end tails of the PDFs are constrained by the low emissions. Despite large anthropogenic emission reduction projected for the future, compound events increase ozone more than the single events by 10 % to 13 %, comparable to the present, and high ozone episodes are not eliminated. Using the CMIP5 multi-model ensemble, the frequency of compound events is found to increase more dominantly compared to the increased frequency of single events in the future over the US, Europe, and China. High ozone episodes will likely continue in the future due to increases in both frequency and intensity of extreme events, despite reductions in anthropogenic emissions of its precursors. However, the latter could reduce or eliminate extreme ozone episodes, so improving projections of compound events and their impacts on extreme ozone may better constrain future projections of extreme ozone episodes that have detrimental effects on human health.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 133 ◽  
Author(s):  
Lijun Liu ◽  
Yuanqiao Wen ◽  
Youjia Liang ◽  
Fan Zhang ◽  
Tiantian Yang

The impact of extreme weather events on the navigation environment in the inland waterways of the Yangtze River is an interdisciplinary hotspot in subjects of maritime traffic safety and maritime meteorology, and it is also a difficult point for the implementation of decision-making and management by maritime and meteorological departments in China. The objective of this study is to review the variation trends and distribution patterns in the periods of adverse and extreme weather events that are expected to impact on inland waterways transport (IWT) on the Yangtze River. The frequency of severe weather events, together with the changes in their spatial extension and intensity, is analyzed based on the ERA-Interim datasets (1979–2017) and the GHCNDEX dataset (1979–2017), as well as the research progresses and important events (2004–2016) affecting the navigation environment. The impacts of extreme weather events on IWT accidents and phenomena of extreme weather (e.g., thunderstorms, lightning, hail, and tornadoes) that affect the navigation environment are also analyzed and discussed. The results show that: (1) the sections located in the plain climate zone is affected by extreme weather in every season, especially strong winds and heat waves; (2) the sections located in the hilly mountain climate zone is affected particularly by spring extreme phenomena, especially heat waves; (3) the sections located in the Sichuan Basin climate zone is dominated by the extreme weather phenomena in autumn, except cold waves; (4) the occurrence frequency of potential flood risk events is relatively high under rainstorm conditions and wind gusts almost affect the navigation environment of the Jiangsu and Shanghai sections in every year; (5) the heat wave indices (TXx, TR, and WSDI) tend to increase and the temperature of the coldest day of the year gradually increases; (6) the high occurrences of IWT accidents need to be emphasized by relevant departments, caused by extreme weather during the dry season; and (7) the trends and the degree of attention of extreme weather events affecting IWT are ranked as: heat wave > heavy rainfall > wind gust > cold spell > storm. Understanding the seasonal and annual frequency of occurrence of extreme weather events has reference significance for regional management of the Yangtze River.


2018 ◽  
Vol 2 (1) ◽  
pp. 9-24
Author(s):  
Edoardo Bertone ◽  
Oz Sahin ◽  
Russell Richards ◽  
Anne Roiko

Abstract A decision support tool was created to estimate the treatment efficiency of an Australian drinking water treatment system based on different combinations of extreme weather events and long-term changes. To deal with uncertainties, missing data, and nonlinear behaviours, a Bayesian network (BN) was coupled with a system dynamics (SD) model. The preliminary conceptual structures of these models were developed through stakeholders' consultation. The BN model could rank extreme events, and combinations of them, based on the severity of their impact on health-related water quality. The SD model, in turn, was used to run a long-term estimation of extreme events' impacts by including temporal factors such as increased water demand and customer feedback. The integration of the two models was performed through a combined Monte Carlo–fuzzy logic approach which allowed to take the BN's outputs as inputs for the SD model. The final product is a participatory, multidisciplinary decision support system allowing for robust, sustainable long-term water resources management under uncertain conditions for a specific location.


2011 ◽  
Vol 17 (2) ◽  
pp. 141 ◽  
Author(s):  
Denis A Saunders ◽  
Peter Mawson ◽  
Rick Dawson

Carnaby’s Black Cockatoo is an endangered species which has undergone a dramatic decline in range and abundance in southwestern Australia. Between October 2009 and March 2010 the species was subjected to a possible outbreak of disease in one of its major breeding areas and exposed to an extremely hot day and a severe localized hail storm. In addition, collisions with motor vehicles are becoming an increasing threat to the species. All of these stochastic events resulted in many fatalities. Species such as Carnaby’s Black Cockatoo which form large flocks are particularly susceptible to localized events such as hail storms, contagious disease and collisions with motor vehicles. Extreme temperatures may have major impacts on both flocking and non-flocking species. Predictions of climate change in the southwest of Western Australia are that there will be an increased frequency of extreme weather events such as heat waves and severe hail storms. The implications of more events of this nature on Carnaby’s Black Cockatoo are discussed.


2016 ◽  
Vol 23 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Zbigniew W. Kundzewicz

Abstract The damage (in real terms after adjusting for inflation) caused by extreme weather events globally has increased dramatically over the past few decades. This is a result of an increase in the amplitude and frequency of weather extremes, as well as of human factors causing a widespread increase in levels of exposure and vulnerability. There are a number of reasons to consider that, in many regions of the globe, weather extremes (e.g. heat waves, droughts, forest fires, intense rainfall, floods and landslides) are becoming both yet more extreme and more frequent. Projections for the future based on climate and impact models point to a further strengthening of this trend. There has already been an increase in rainfall intensity in conditions of a warmer climate, and a continuation of this trend is expected, with adverse consequences for flood risk. However, the development of flood-prone areas and increase in damage potential are often the dominant factors underpinning growing flood damage and flood risk. In warmer climates, an increased risk of river and flash flooding caused by heavy rainfall, as well as an increasing risk of coastal flooding associated with sea level rise can be expected over large areas. By the same token, a reduction in the risk of snowmelt flooding events is projected in the warmer climate. Projections also indicate an increased risk of drought in many areas. The projections for climate change in Poland point to several risks associated with an increase in the frequency, intensity and severity of weather extremes (heat waves, intensive rainfall, flooding and landslides, coastal surges, drought during the growing season and winter, strong winds and pathogens associated with warming). Heat waves will become more frequent, more intense and more troublesome for the ageing population of Poland.


2021 ◽  
Author(s):  
Sanaz Moghim ◽  
Mohammad Sina Jahangir

Abstract Extreme weather events such as heat waves and cold spells affect people’s lives. This study uses a probabilistic framework to evaluate heat waves and cold spells in different regions (Tehran in Iran and Vancouver in Canada). Average daily temperatures of meteorological stations of the two cities from 1995 to 2016 are used to identify four main indicators including intensity, average intensity, duration, and the rate of the occurrence. In addition, average intensities of the events are obtained from the MODIS Land Surface Temperature (LST) in each pixel of the two cities. To include possible uncertainties, the predictive probability distributions of the intensity and duration are derived using a Bayesian scheme and Monte-Carlo Markov Chain (MCMC) method. The probability distributions of the indicators show that the most extreme temperature (lowest temperature) occurs during the cold spell. Results indicate that although Tehran is more probable to experience heat waves than Vancouver, both cities are more likely to be affected by the cold spell than the heat wave. The developed approach can be used to characterize other extreme weather events in any location.


2020 ◽  
Author(s):  
Md Asif Rahman

Alkali-silica reaction (ASR) is one of the common sources of concrete damage worldwide. The surrounding environment, namely, temperature and humidity greatly influence the alkali-silica reaction induced expansion. Global warming (GW) has caused frequent change in the climate and initiated extreme weather events in recent years. These extreme events anticipate random change in temperature and humidity, and convey potential threats to the concrete infrastructure. Moreover, external loading conditions also affect the service life of concrete. Thus, complex mechanisms of ASR under the impact of seasonal change and global warming require a precise quantitative assessment to guide the durable infrastructure materials design practices. Despite decades of phenological observation study, the expansion behavior of ASR under these situations remains to be understood for capturing the ASR damage properly. Within this context this research focuses on the mathematical model development to quantify and mitigate ASR-induced damage. Mesoscale characteristics of ASR concrete was captured in the virtual cement-concrete lab where the ASR gel-induced expansion zone was added as a uniform thickness shell. Finite element method (FEM) was used to solve the ASR formation and expansion evolution. The results of this study are presented in the form of one conference and their journal manuscripts. The first manuscript focuses on the development of the governing equations based on the chemical formulas of alkali-silica reaction to account for the ASR kinetics and swelling pressure exerted by the ASR expansion. There is a fluid flow and mass transfer in the concrete domain due to ASR gel associated from ASR kinetics. This paper involves derivation of the mass and momentum balance equation in terms of the thermo-hygro-mechanical (THM) model. THM model accounts for thermal expansion and hygroscopic swelling in addition to traffic loads to represent volumetric change in the concrete domain. The second manuscript is a case study based on different cement-aggregate proportions and alkali hydroxide concentrations. It is important to know how ASR evolves under variable concentration of the chemical species. The simulated results show that high concentration of hydroxide ion in concrete initiates more reaction and damage in concrete. Also chemical reaction moves to the right direction with low cement to aggregate ratio which means ASR expansion depends on the availability of the reactive aggregates in the concrete domain. The third manuscript attempts to develop a simplified ASR model that integrates chemo-physio-mechanical damage under stochastic weather impact. Stochasicity incorporates the random behavior of surrounding nature in the model. The simulated results elucidate that ASR expansion is more severe under the influence of global warming and climate change. This will support long-term damage forecasts of concrete subjected to extreme weather events. The fourth manuscript focuses on the quantification of mechanical damage under ASR expansion and a dedicated mitigation scheme to minimize it. Added creep loads and physics identify the role of creep damage on ASR expansion. The results from this paper confirms that the ASR-induced damage significantly minimize the load carrying capacity of concrete. It directly affects the compressive strength, tensile strength, and modulus of elasticity of concrete. Damage in aggregates domain is more than the mortar phase under the creep loadings. Among many supplementary materials, fly ash is the most effective in minimizing ASR expansion and damage. This work also includes a petrographic comparison between different mineral types collected from different locations to identify the reactivity of certain aggregates. Thus, the final outcome of this research is a complete model which is a conclusive solution to the long-term ASR damage prediction. The validated model provides better understanding of ASR kinetics from mesoscale perspective. The developed model can potentially accelerate the precise prediction of concrete service life and mitigation schemes as well as can be used as an alternative scope to the costly laboratory tests methods.


Sign in / Sign up

Export Citation Format

Share Document