scholarly journals Cryopreservation and Acclimatization of Lycopersicon esculentum (Mill.) Genotypes

2014 ◽  
Vol 42 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Ana COSTE ◽  
Sergiu VALIMAREANU ◽  
Adela HALMAGYI

Romanian tomato (Lycopersicon esculentum Mill.) cultivars have been cryopreserved by encapsulation-dehydration and successfully acclimatized to ex vitro growth conditions. Shoot tips were excised from in vitro grown plants then precultured for 24 h in various sucrose concentrations, dehydrated up to 6 h in laminar air flow prior to direct immersion in liquid nitrogen   (−196°C) for 24 h. Different parameters have been studied: the effects of osmoprotection and desiccation duration on the regrowth of cryopreserved shoot tips, the effects of various IBA concentrations on rooting and the ex vitro cclimatization of plants recovered from liquid nitrogen. The highest frequency of regrowth (72% cv. ‘Pontica’) was obtained when encapsulated explants were precultured in 0.5 M sucrose and the moisture content (fresh weight basis) of alginate beads was 23%. The highest rooting rates (58% to 77%) for all cultivars were observed for shoots grown on MS medium supplemented with 1.0 mg/l IBA. The rooted plants could be easily acclimatized ex vitro with up to 100% survival.

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 516c-516 ◽  
Author(s):  
Richard K. Kiyomoto ◽  
Mark H. Brand

Experiments were conducted on tissue proliferation (TP) development and in vitro and ex vitro growth of tissues from plants with (TP+) and without TP (TP-). In 1993 the increase in TP in one-, two-, and three-yr-old `Holden' and `Besse Howells' was 3%, 52%. and 32% and 10%, 26% and 21%, respectively. No differential mortality was observed. Shoot tip cultures initated from TP+ and TP- `Montego' showed 10-12 mo were required for miniaturiziation and multiplication in TP- shoot tips and 4 mo in TP+ shoot tips. TP- cultures require 10 uM 2-iP for normal shoot proliferation; whereas TP+ cultures had to be transferred to hormone-free medium after 6 mo to maintain normal shoot morphology. Cutting propagation from TP- and TP+ plants older than 5 yr, showed persistence of morphological aberrations associated with TP+ plants.


2013 ◽  
Vol 41 (2) ◽  
pp. 638 ◽  
Author(s):  
Aylin OZUDOGRU ◽  
Diogo Pedrosa Corrêa Da SILVA ◽  
Ergun KAYA ◽  
Giuliano DRADI ◽  
Renato PAIVA ◽  
...  

The study focused on an economically-important ornamental outdoor shrub, Nandina domestica, with the aims to (i) optimize an effective in vitro conservation method, and (ii) develop a cryopreservation protocol for shoot tips by the PVS2 vitrification and droplet-vitrification techniques. For in vitro conservation of shoot cultures, the tested parameters were sucrose content in the storage medium (30, 45, 60 g/L) and storage temperature (4 °C or 8 °C). Cryopreservation was performed by applying the PVS2 vitrification solution, in 2-ml cryovials or in drops over aluminum foil strips, for 15, 30, 60 or 90 min at 0 °C, followed by the direct immersion in liquid nitrogen of shoot tips. Results show that N. domestica shoots can be conserved successfully for 6 months at both the temperatures tested, especially when 60 g/L sucrose is used in the storage medium. However, conservation at 4 °C showed to be more appropriate, as hyperhydricity was observed in post-conservation of shoots coming from storage at 8 °C. As for cryopreservation, a daily gradual increase of sucrose concentration (from 0.25 to 1.0 M) produced better protection to the samples that were stored in liquid nitrogen. Indeed, with this sucrose treatment method, a 30-min PVS2 incubation time was enough to produce, 60 days after thawing, the best recovery (47% and 50%) of shoot tips, cryopreserved with PVS2 vitrification and droplet-vitrification, respectively.


1970 ◽  
Vol 45 (1) ◽  
pp. 75-78 ◽  
Author(s):  
Shahina Islam ◽  
Mosfequa Zahan ◽  
Shahina Akter ◽  
Tanjina Akhtar Banu ◽  
Ahashan Habib ◽  
...  

An efficient mass propagation method for Feronia limonia was developed from excised shoot tips and nodal explants of in vitro grown seedlings. Explants were cultured on MS medium with different conc. of NAA, Kn, IAA and BAP singly or in combinations. Highest number of micro shoots and better plant growth were obtained from these two explants on MS medium supplemented with 0.2 mg/l BAP alone. The regenerated shoots were successfully rooted on MS medium supplemented with 0.5 mg/l NAA. The in vitro raised plantlets were successfully established in soil following the formation of roots with 100% survivability under ex vitro condition. Key words: Feronia limonia; Mass propagation; Node; Shoot tips; Multiple shoot DOI: 10.3329/bjsir.v45i1.5186 Bangladesh J. Sci. Ind. Res. 45(1), 75-78, 2010


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 235 ◽  
Author(s):  
Kyungtae Park ◽  
Bo Kook Jang ◽  
Ha Min Lee ◽  
Ju Sung Cho ◽  
Cheol Hee Lee

Selaginella martensii, an evergreen perennial fern that is native to South America and New Zealand, is named “frosty fern” because of its beautiful white-colored leaves and it is used as an ornamental plant. Efficient propagation methods for this species have not been developed. We aimed to develop an efficient propagation method for S. martensii through in vitro culture. We investigated culture conditions that are suitable for shoot-tip proliferation and growth. The optimum shoot-tip culture conditions were determined while using Murashige and Skoog (MS) medium (quarter, half, full, or double strength) and macronutrients (sucrose and two nitrogen sources) at various concentrations. In MS medium, the shoot tips formed a maximum of 6.77 nodes per explant, and each node formed two new shoot tips (i.e., 26 or 64 shoot tips). When using branching segments containing an angle meristem, the shoot-to-rhizophore formation ratio could be controlled by medium supplementation with plant-growth regulators. Sporophytes that were grown from shoot tips in vitro were acclimated in ex vitro soil conditions and successfully survived in the greenhouse. Numerous shoot tips could be obtained from in vitro-grown sporophytes and be proliferated ex vitro to produce a large number of plants. This method provides a way of shortening the time that is required for producing a large stock of S. martensii planting material.


2014 ◽  
Vol 75 (3) ◽  
pp. 625-639 ◽  
Author(s):  
Patricia L. Sáez ◽  
León A. Bravo ◽  
Mirtha I. Latsague ◽  
Marcelo J. Toneatti ◽  
Rafael E. Coopman ◽  
...  

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 434b-434
Author(s):  
Myrna Stenberg ◽  
Michael E. Kane ◽  
Nancy Philman

Micropropagation is a commercially viable and ecologically sound method for producing native herbaceous wetland plants used for wetland revegetation projects. The ability to rapidly screen, select and store germplasm of wetland species genotypes with desirable characteristics of growth rate and habit, nutrient uptake capacity, and/or substrate preference would significantly impact how micropropagated wetland plants are marketed. Early screening of plantlet growth ex vitro may provide an efficient method to select for specific characteristics of growth rate and habit. Five micropropagated lines of Pontederia cordata of differing phenotype were established in vitro from Florida populations. Rooted microcuttings were established ex vitro in a shallow outdoor tank. Growth and development were monitored over a 9 week period. Significant differences in shoot growth and number, leaf area and number, flowering and dry weights were observed between the different Pontederia cordata varieties.


2017 ◽  
Vol 66 (1-2) ◽  
pp. 44-50
Author(s):  
Tatjana Vujović ◽  
Đurđina Ružić ◽  
Radosav Cerović

SummaryIn vitro shoot tips of the blackberry cultivar ‘Čačanska Bestrna’ were cryopreserved using the droplet vitrification technique. Upon loading (30 min) in a solution of 1.9 M glycerol and 0.5 M sucrose, the explants were dehydrated for 40 min on ice with the PVS A3 vitrification solution (glycerol 37.5%, dimethyl sulfoxide 15%, ethylene glycol 15% and sucrose 22.5%) and for 40 min at room temperature with the PVS3 solution (glycerol 50% and sucrose 50%). They were subsequently frozen in individual microdroplets of vitrification solution, by direct immersion in liquid nitrogen (LN), and kept therein for 2, 4, 8 and 24 h. The explant rewarming was performed in an unloading solution (0.8 M sucrose) for 30 min at room temperature. The duration of LN exposure did not exert significant effects on the survival and regrowth of explants in both types of vitrification solutions. The survival and regrowth of cryopreserved shoot tips dehydrated with PVS3 solution ranged between 90–95% and 80–90%, respectively. However, dehydration with PVS A3 resulted in a lower survival rate (80–90%) and a considerably lower regrowth rate (55–65%) of explants. Monitoring the shoots regenerated in the in vitro culture revealed their normal capacity for multiplication and rooting in comparison with the controls, which fully confirms the purpose of cryopreservation in the long-term preservation of plant material.


Sign in / Sign up

Export Citation Format

Share Document