scholarly journals Potential role of potassium currents in the repolarization reserve: the importance of cardiac repolarization reserve in safety pharmacology

2014 ◽  
Vol 9 (5-6) ◽  
pp. 212-212
Author(s):  
Norbert Jost ◽  
Danina Muntean ◽  
Andras Varro
Author(s):  
Leila Topal ◽  
Muhammad Naveed ◽  
Péter Orvos ◽  
Bence Pászti ◽  
János Prorok ◽  
...  

AbstractCannabis use is associated with known cardiovascular side effects such as cardiac arrhythmias or even sudden cardiac death. The mechanisms behind these adverse effects are unknown. The aim of the present work was to study the cellular cardiac electrophysiological effects of cannabidiol (CBD) on action potentials and several transmembrane potassium currents, such as the rapid (IKr) and slow (IKs) delayed rectifier, the transient outward (Ito) and inward rectifier (IK1) potassium currents in rabbit and dog cardiac preparations. CBD increased action potential duration (APD) significantly in both rabbit (from 211.7 ± 11.2. to 224.6 ± 11.4 ms, n = 8) and dog (from 215.2 ± 9.0 to 231.7 ± 4.7 ms, n = 6) ventricular papillary muscle at 5 µM concentration. CBD decreased IKr, IKs and Ito (only in dog) significantly with corresponding estimated EC50 values of 4.9, 3.1 and 5 µM, respectively, without changing IK1. Although the EC50 value of CBD was found to be higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that potassium channel inhibition by lengthening cardiac repolarization might have a role in the possible proarrhythmic side effects of cannabinoids in situations where CBD metabolism and/or the repolarization reserve is impaired.


2002 ◽  
Vol 137 (3) ◽  
pp. 361-368 ◽  
Author(s):  
Péter Biliczki ◽  
László Virág ◽  
Norbert Iost ◽  
Julius Gy Papp ◽  
András Varró

2009 ◽  
Vol 47 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Keiko Ishihara ◽  
Nobuaki Sarai ◽  
Keiichi Asakura ◽  
Akinori Noma ◽  
Satoshi Matsuoka

2015 ◽  
Vol 93 (7) ◽  
pp. 535-544 ◽  
Author(s):  
Zoltán Husti ◽  
Katalin Tábori ◽  
Viktor Juhász ◽  
Tibor Hornyik ◽  
András Varró ◽  
...  

A reliable assessment of the pro-arrhythmic potential for drugs in the development phase remains elusive. Rabbits and dogs are commonly used to create models of pro-arrhythmia, but the differences between them with respect to repolarizing potassium currents are poorly understood. We investigated the incidence of drug-induced torsades de pointes (TdP) and measured conventional ECG parameters and the short-term variability of the QT interval (STVQT) following combined pharmacological inhibition of IK1+IKs and IK1+IKr in conscious dogs and anesthetized rabbits. A high incidence of TdP was observed following the combined inhibition of IK1+IKs in dogs (67% vs. 14% in rabbits). Rabbits exhibited higher TdP incidence after inhibition of IK1+IKr (72% vs. 14% in dogs). Increased TdP incidence was associated with significantly larger STVQT in both models. The relatively different roles of IK1 and IKs in dog and rabbit repolarization reserve should be taken into account when extrapolating the results from animal models of pro-arrhythmia to humans. A stronger repolarization reserve in dogs (likely due to stronger IK1 and IKs), and the more human-like susceptibility to arrhythmia of rabbits argues for the preferred use of rabbits in the evaluation of adverse pro-arrhythmic effects.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document