scholarly journals Adaptive Compensation of Friction Forces with Differential Filter

Author(s):  
Kouichi Mitsunaga ◽  
Takami Matsuo

In this paper, we design an adaptive controller to compensate the nonlinear friction model when the output is the position. First, we present an adaptive differential filter to estimate the velocity. Secondly, the dynamic friction force is compensated by a fuzzy adaptive controller with position measurements. Finally, a simulation result for the proposed controller is demonstrated.

1995 ◽  
Vol 117 (2) ◽  
pp. 255-260 ◽  
Author(s):  
Andreas A. Polycarpou ◽  
Andres Soom

The instantaneous normal motion between bodies in a sliding contact is an important variable in determining dynamic friction under unsteady sliding conditions. In order to model friction under dynamic conditions, it is therefore necessary to combine a dynamic model of the sliding system with an accurate model of the friction process. In the present work, the nonlinear normal dynamics of a friction test apparatus are described by a linearized model at a particular steady loading and sliding condition in a mixed or boundary-lubricated regime. The geometry is a line contact. The Hertzian bulk contact compliance and film and asperity damping and stiffness characteristics are included as discrete elements. In Part I of the paper, a fifth-order model is developed for the normal dynamics of the system, using both the Eigensystem Realization Algorithm (ERA) and classical experimental modal analysis techniques. In Part II, this system model is combined with a friction model, developed independently, to describe dynamic friction forces under both harmonic and impulsive applied normal loads.


Author(s):  
Amel Bouzeriba

In this chapter, the projective synchronization problem of different multivariable fractional-order chaotic systems with both uncertain dynamics and external disturbances is studied. More specifically, a fuzzy adaptive controller is investigated for achieving a projective synchronization of uncertain fractional-order chaotic systems. The adaptive fuzzy-logic system is used to online estimate the uncertain nonlinear functions. The latter is augmented by a robust control term to efficiently compensate for the unavoidable fuzzy approximation errors, external disturbances as well as residual error due to the use of the so-called e-modification in the adaptive laws. A Lyapunov approach is employed to derive the parameter adaptation laws and to prove the boundedness of all signals of the closed-loop system. Numerical simulations are performed to verify the effectiveness of the proposed synchronization scheme.


2011 ◽  
Vol 383-390 ◽  
pp. 7321-7327
Author(s):  
Luo Fei Wan ◽  
Xian Xing Liu ◽  
Zheng Qi Wang ◽  
Jin Wei Zhou

This paper presents a new strategy of direct torque controller for bearingless induction motor using space vector pulse width modulation based on fuzzy adaptive control. when we use direct torque controller using space vector pulse width modulation to take decoupling, the parameters of PI controller which generating the reference voltage vector in conventional SVM-DTC are difficult to determine the dynamic operation. In order to improve away the disadvantages of conventional SVM-DTC system, flux and torque fuzzy adaptive controller were designed to substitute the original flux and torque PI controller in the controlling for bearingless induction motor using space vector pulse width modulation. With the fuzzy algorithm, it is easy to obtain the control voltage component of the flux and torque respectively. Two voltage vectors achieve real-time adjustment and solve the disturbance problems in torque loop and flux loop. In this paper, the design process of the fuzzy adaptive controller is given. Use Matlab/Simulink to check the improved and traditional SVM-DTC method. The results show that the improved algorithms have a better performance in reducing the ripple of torque, flux and Rotor displacement when compared with the tradition DTC method. And it also improves the system dynamic performance.


Sign in / Sign up

Export Citation Format

Share Document