scholarly journals Implementation of Leader-Follower Formation Control of a Team of Nonholonomic Mobile Robots

Author(s):  
Augie Widyotriatmo ◽  
Endra Joelianto ◽  
Agung Prasdianto ◽  
Hafidz Bahtiar ◽  
Yul Yunazwin Nazaruddin

A control method for a team of multiple mobile robots performing leader-follower formation by implementing computing, communication, and control technol-ogy is considered. The strategy expands the role of global coordinator system andcontrollers of multiple robots system. The global coordinator system creates no-collision trajectories of the virtual leader which is the virtual leader for all vehicles,sub-virtual leaders which are the virtual leader for pertinent followers, and virtualfollowers. The global coordinator system also implements role assignment algorithmto allocate the role of mobile robots in the formation. The controllers of the individualmobile robots have a task to track the assigned trajectories and also to avoid collisionamong the mobile robots using the artificial potential field algorithm. The proposedmethod is tested by experiments of three mobile robots performing leader-followerformation with the shape of a triangle. The experimental results show the robustnessof formation of mobile robots even if the leader is manually moved to the arbitrarylocation, and so that the role of a leader is taken by the nearest mobile robot to thevirtual leader.

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Zhaoxia Peng ◽  
Shichun Yang ◽  
Guoguang Wen ◽  
Ahmed Rahmani

This paper investigates the distributed consensus-based robust adaptive formation control for nonholonomic mobile robots with partially known dynamics. Firstly, multirobot formation control problem has been converted into a state consensus problem. Secondly, the practical control strategies, which incorporate the distributed kinematic controllers and the robust adaptive torque controllers, are designed for solving the formation control problem. Thirdly, the specified reference trajectory for the geometric centroid of the formation is assumed as the trajectory of a virtual leader, whose information is available to only a subset of the followers. Finally, numerical results are provided to illustrate the effectiveness of the proposed control approaches.


2018 ◽  
Vol 26 (6) ◽  
pp. 2250-2258 ◽  
Author(s):  
Akshit Saradagi ◽  
Vijay Muralidharan ◽  
Vishaal Krishnan ◽  
Sandeep Menta ◽  
Arun D. Mahindrakar

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hua Chen ◽  
Shen Xu ◽  
Lulu Chu ◽  
Fei Tong ◽  
Lei Chen

In this paper, finite-time tracking problem of nonholonomic mobile robots for a moving target is considered. First of all, polar coordinates are used to characterize the distance and azimuth between the moving target and the robot. Then, based on the distance and azimuth transported from the sensor installed on the robot, a finite-time tracking control law is designed for the nonholonomic mobile robot by the switching control method. Rigorous proof shows that the tracking error converges to zero in a finite time. Numerical simulation demonstrates the effectiveness of the proposed control method.


2020 ◽  
Vol 25 (4) ◽  
pp. 1747-1755
Author(s):  
Xinwu Liang ◽  
Hesheng Wang ◽  
Yun-Hui Liu ◽  
Zhe Liu ◽  
Weidong Chen

Sign in / Sign up

Export Citation Format

Share Document