scholarly journals The Practical Impacts of Exercise-Intervention on COVID-19 Pandemic

2020 ◽  
Vol 29 (4) ◽  
pp. 339-346
Author(s):  
Jin-Gu Ji ◽  
Kwi Baek Kim ◽  
Yi Sub Kwak

PURPOSE: Coronavirus-19 (COVID-19) was first reported in China at the end of 2019. COVID-19 infected people increased and spreads COVID-19 rapidly across the globe. Finally, this outbreak turn into a pandemic and yields national crisis and finally to endemic. Most individual are exposed to stressful situation because of unknown duration of COVID-19. Most of all, smoking, obesity, metabolic syndromes, lowered immunity such as decreased natural killer (NK) cell, T cell activity were significantly correlated with the COVID19 incidence. However, all this variables were concerned with exercise habit and exercise-intervention, therefore, the present study aimed to assess the relationship between COVID-19 incidence and physical activity status.METHODS: PubMed database was searched from December 2019 to August 2020 using predefined search terms “COVID-19”, “exercise”, and “immunity”.Based on reference search, more than 65 articles were identified whereas 50 papers (36 references) met the inclusion criteria and were well connected with COVID-19 and physical exercise with immunity.We analyzed the connections between exercise and COVID-19 with many variables, and dealtabout COVID-19 prevention and exercise-intervention programs in the main text.RESULTS & CONCLUSIONS: Smoking, obesity, metabolic syndromes, reduced respiratory muscle mass, lowered immunity such as decreased natural killer cell and T cell activity were significantly correlated with the COVID-19 infection.However, all this variables were also concerned with exercise habit and exercise-intervention.Regular physical activity have shown to be an effective prescription for obesity, many metabolic syndromes and good immunity. However, physical inactivity and chronic metabolic syndromes were associated with reduced immunity such as reduced NK cell activity, uncontrolled T cell immunity, decreased respiratory immunity and even URTIs (upper respiratory track infection) for elite athletes. Multicomponent exercise program is considered especially for the elderly people, 5 days per week, 40-60% HRR (heart rate reserve) intensity, and 150-300 minutes aerobic and resistance training (200-400 minutes/week under the quarantine period) were recommended. Moreover, all form of psychological support also to increase immunity against COVID-19.More mechanism studies are urgently needed to determine which mode and which duration exercises are best most suited, and effective for prevention and treatment of COVID-19.

2004 ◽  
Vol 96 (1) ◽  
pp. 271-275 ◽  
Author(s):  
Brian K. McFarlin ◽  
Michael G. Flynn ◽  
Laura K. Stewart ◽  
Kyle L. Timmerman

The purpose of this study was to evaluate the effect of high-intensity endurance exercise and carbohydrate consumption on in vitro responsiveness of natural killer (NK) to IL-2 (2.5 U/ml for 24 h). Thirteen male subjects (18-26 yr old; peak O2consumption = 59.79 ± 5.13 ml·kg-1·ml-1) were recruited to complete two 1-h (75-80% peak O2consumption) cycling trials in a random counterbalanced order: carbohydrate (CHO) and placebo (Pla). Venous blood samples were collected before (Pre), immediately (Post), 2 h (2H), and 4 h (4H) after exercise. All resting samples were taken after 15 min of seated rest. NK (CD3-/56+), activated NK (CD3-/56+/69+), helper T cell (Th; CD3+/4+), and cytotoxic T cell (Tc; CD3+/8+) number were measured by using flow cytometry. NK cell activity (NKCA) was determined by using both a51Cr release assay (NKCA-51) and activated NK cell number (NKCA-69). Immune system variables were not different between CHO and Pla, with the exception of NK cell responsiveness to IL-2, where Post (116.2%) and 4H (48.4%) was significantly greater in CHO ( P < 0.05). NK, Th, and Tc were significantly higher Post (40.7, 102.7, and 82.0%, respectively) and lower at 2H (-51.9, -53.3, and -53.2%, respectively) than Pre (time effect). 4H was not different from Pre for NK, Th, and Tc. NKCA was significantly lower 2H (NKCA-51, NKCA-69) and 4H (NKCA-69) than Pre. CHO consumption during exercise did not prevent disruptions in unstimulated immune system function, but it did enhance NK responsiveness to IL-2.


2018 ◽  
Vol 2 (15) ◽  
pp. 1818-1827 ◽  
Author(s):  
Bethany Mundy-Bosse ◽  
Nathan Denlinger ◽  
Eric McLaughlin ◽  
Nitin Chakravarti ◽  
Susan Hwang ◽  
...  

Key Points Paradoxically higher NK-cell activity in CTCL patients is associated with increased expression of phosphorylated STAT5. These highly effective NK cells are associated with poor prognosis in patients with leukemic CTCL.


1983 ◽  
Vol 55 (2) ◽  
pp. 305-309 ◽  
Author(s):  
Yasuhiro Yoda ◽  
Tsukasa Abe ◽  
Akio Tashiro ◽  
Shinsaku Hirosawa ◽  
Kenichi Kawada ◽  
...  

2021 ◽  
Vol 22 (7) ◽  
pp. 3489
Author(s):  
Takayuki Morimoto ◽  
Tsutomu Nakazawa ◽  
Ryosuke Matsuda ◽  
Fumihiko Nishimura ◽  
Mitsutoshi Nakamura ◽  
...  

Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults. Natural Killer (NK) cells are potent cytotoxic effector cells against tumor cells inducing GBM cells; therefore, NK cell based- immunotherapy might be a promising target in GBM. T cell immunoglobulin mucin family member 3 (TIM3), a receptor expressed on NK cells, has been suggested as a marker of dysfunctional NK cells. We established TIM3 knockout in NK cells, using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). Electroporating of TIM3 exon 2- or exon 5-targeting guide RNA- Cas9 protein complexes (RNPs) inhibited TIM3 expression on NK cells with varying efficacy. T7 endonuclease I mutation detection assays showed that both RNPs disrupted the intended genome sites. The expression of other checkpoint receptors, i.e., programmed cell death 1 (PD1), Lymphocyte-activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and TACTILE (CD96) were unchanged on the TIM3 knockout NK cells. Real time cell growth assays revealed that TIM3 knockout enhanced NK cell–mediated growth inhibition of GBM cells. These results demonstrated that TIM3 knockout enhanced human NK cell mediated cytotoxicity on GBM cells. Future, CRISPR-Cas9 mediated TIM3 knockout in NK cells may prove to be a promising immunotherapeutic alternative in patient with GBM.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yan Feng ◽  
Yan Li ◽  
Ying Zhang ◽  
Bo-Hao Zhang ◽  
Hui Zhao ◽  
...  

Abstract Background Brain ischemia compromises natural killer (NK) cell-mediated immune defenses by acting on neurogenic and intracellular pathways. Less is known about the posttranscriptional mechanisms that regulate NK cell activation and cytotoxicity after ischemic stroke. Methods Using a NanoString nCounter® miRNA array panel, we explored the microRNA (miRNA) profile of splenic NK cells in mice subjected to middle cerebral artery occlusion. Differential gene expression and function/pathway analysis were applied to investigate the main functions of predicted miRNA target genes. miR-1224 inhibitor/mimics transfection and passive transfer of NK cells were performed to confirm the impact of miR-1224 in NK cells after brain ischemia. Results We observed striking dysregulation of several miRNAs in response to ischemia. Among those miRNAs, miR-1224 markedly increased 3 days after ischemic stroke. Transfection of miR-1224 mimics into NK cells resulted in suppression of NK cell activity, while an miR-1224 inhibitor enhanced NK cell activity and cytotoxicity, especially in the periphery. Passive transfer of NK cells treated with an miR-1224 inhibitor prevented the accumulation of a bacterial burden in the lungs after ischemic stroke, suggesting an enhanced immune defense of NK cells. The transcription factor Sp1, which controls cytokine/chemokine release by NK cells at the transcriptional level, is a predicted target of miR-1224. The inhibitory effect of miR-1224 on NK cell activity was blocked in Sp1 knockout mice. Conclusions These findings indicate that miR-1224 may serve as a negative regulator of NK cell activation in an Sp1-dependent manner; this mechanism may be a novel target to prevent poststroke infection specifically in the periphery and preserve immune defense in the brain.


2000 ◽  
Vol 124 (10) ◽  
pp. 1510-1513 ◽  
Author(s):  
Paulette Mhawech ◽  
L. Jeffrey Medeiros ◽  
Carlos Bueso-Ramos ◽  
Donna M. Coffey ◽  
Alfredo F. Gei ◽  
...  

Abstract Non-Hodgkin lymphomas (NHL) can involve the gynecologic tract, most often as a manifestation of systemic involvement, and most cases reported have been of B-cell lineage. We describe 2 women with natural killer (NK)-cell lymphoma involving the gynecologic tract that initially presented with vaginal bleeding. In case 1, the patient had a stage IE nasal-type NK-cell lymphoma involving the cervix. The tumor was composed of medium-sized, irregular lymphoid cells with angioinvasion and necrosis. In case 2, the patient had a stage IV blastoid NK-cell lymphoma/leukemia infiltrating all organs in a hysterectomy and bilateral salpingo-oophorectomy specimen. Subsequent biopsy specimens revealed that the bone marrow and lymph nodes were also involved. The neoplasm was composed of small to medium lymphoid cells with fine nuclear chromatin. Case 1 was assessed immunohistochemically and the neoplastic cells were positive for CD3, CD56, and TIA-1. Case 2 was analyzed using both immunohistochemical and flow cytometry methods. The neoplastic cells were positive for cytoplasmic CD3, CD4, CD7, CD43, CD45, and CD56 and were negative for surface CD3. Both cases were negative for Epstein-Barr virus (EBV) ribonucleic acid (RNA) and molecular studies showed no evidence of T-cell receptor γ chain gene rearrangements. The immunophenotype and absence of T-cell receptor gene rearrangements support NK-cell origin. We report these cases to illustrate that NK-cell lymphomas can involve, and rarely arise in, the gynecologic tract.


Sign in / Sign up

Export Citation Format

Share Document