scholarly journals Anti-tumor effects of RTX-240: an engineered red blood cell expressing 4-1BB ligand and interleukin-15

Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.

2008 ◽  
Vol 205 (13) ◽  
pp. 2965-2973 ◽  
Author(s):  
Susan Gilfillan ◽  
Christopher J. Chan ◽  
Marina Cella ◽  
Nicole M. Haynes ◽  
Aaron S. Rapaport ◽  
...  

Natural killer (NK) cells and CD8 T cells require adhesion molecules for migration, activation, expansion, differentiation, and effector functions. DNAX accessory molecule 1 (DNAM-1), an adhesion molecule belonging to the immunoglobulin superfamily, promotes many of these functions in vitro. However, because NK cells and CD8 T cells express multiple adhesion molecules, it is unclear whether DNAM-1 has a unique function or is effectively redundant in vivo. To address this question, we generated mice lacking DNAM-1 and evaluated DNAM-1–deficient CD8 T cell and NK cell function in vitro and in vivo. Our results demonstrate that CD8 T cells require DNAM-1 for co-stimulation when recognizing antigen presented by nonprofessional antigen-presenting cells; in contrast, DNAM-1 is dispensable when dendritic cells present the antigen. Similarly, NK cells require DNAM-1 for the elimination of tumor cells that are comparatively resistant to NK cell–mediated cytotoxicity caused by the paucity of other NK cell–activating ligands. We conclude that DNAM-1 serves to extend the range of target cells that can activate CD8 T cell and NK cells and, hence, may be essential for immunosurveillance against tumors and/or viruses that evade recognition by other activating or accessory molecules.


2015 ◽  
Author(s):  
Jacob Hanna ◽  
Ofer Mandelboim

Initiation of the adaptive immune response is dependent on the priming of naive T cells by APCs. Proteomic analysis of unactivated and activated human NK cell membrane-enriched fractions demonstrated that activated NK cells can efficiently stimulate T cells, since they upregulate MHC class II molecules and multiple ligands for TCR costimulatory molecules. Furthermore, by manipulating antigen administration, we show that NK cells possess multiple independent unique pathways for antigen uptake. These results highlight NK cell-mediated cytotoxicity and specific ligand recognition by cell surface-activating receptors on NK cells as unique mechanisms for antigen capturing and presentation. In addition, we analyzed the T cell-activating potential of human NK cells derived from different clinical conditions, such as inflamed tonsils and noninfected and CMV-infected uterine decidual samples, and from transporter-associated processing antigen 2–deficient patients. This in vivo analysis revealed that proinflammatory, but not immune-suppressive, microenvironmental requirements can selectively dictate upregulation of T cell-activating molecules on NK cells. Taken together, these observations offer new and unexpected insights into the direct interactions between NK and T cells and suggest novel APC-like activating functions for human NK cells.


1980 ◽  
Vol 30 (2) ◽  
pp. 473-483
Author(s):  
R M Welsh ◽  
W F Doe

The characteristics and specificities of spleen and peritoneal cytotoxic cells generated during lymphocytic choriomeningitis virus (LCMV) infection of C3H/St mice were examined. Activated natural killer (NK) cell activity was identified in fresh leukocyte populations from the 2nd to 8th days postinfection, whereas virus-specific cytotoxic T-cell activity was detected from the 6th to 14th days. When leukocytes were cultured overnight at 37 degrees C before assay, T-cell activity was still observed, but nonspecific activated NK cell-like cytotoxicity was only detected on the 6th and to a lesser degree the 8th day postinfection. Overnight culture of leukocytes taken earlier in the infection eliminated their NK cell activity. Similar activities were seen with spleen cell, plastic-adherent peritoneal cell, and nonadherent peritoneal cell populations. The virus-specific cytotoxicity observed with adherent peritoneal cells was due to contamination with cytotoxic T cells, as shown by H-2-restricted cytotoxicity and sensitivity to anti-theta antibody and complement. The nonspecific cultured day 6 effector cell from either the spleen or peritoneum displayed killing specificities and other physical properties identical to those of activated NK cells, but had sensitivities to anti-theta antibody and complement intermediate between activated day 3 NK cells and cytotoxic T cells. Culture stable NK-like cells were not found in athymic nude mice, suggesting a T-cell-dependent mechanism. Whereas LCMV spleen homogenates contained 10-fold-higher levels of interferon at day 2 than at day 6 postinfection, substantially more (nearly 20-fold) interferon was made in cultures of day 6 cells than day 2 cells. Spleen interferon was predominantly type I, whereas the culture interferon was predominantly type II, as shown by acid lability studies. Significant levels of interferon were produced by nylon-wool-passed day 6 spleen cells, and virtually all interferon production was eliminated by treatment of either day 2 or day 6 cells with antibody to theta antigen and complement, suggesting that T cells produced the interferon in vitro. Furthermore, athymic nude mice had no culture-stable NK cells 6 days postinfection, and spleen cells from them failed to produce significant levels of interferon in vitro. Addition of interferon (type I, fibroblast) to cultured C3H spleen cells affect the already elevated levels of cytotoxicity in day 6 cultures, suggesting that the NK cells in the day 6 culture were already activated. Our results suggest that T cells responding to LCMV infection secrete interferon type II which causes the continued activation of NK cells in culture. The resulting population of activated NK cells therefore appears to be relatively stable in culture and to express more theta antigen because of this T-cell dependence. Although one could mistakenly or allospecific cytotoxic T cells or cytotoxic macrophages, more careful examination shows that they are most likely activated NK cells...


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2162-2162
Author(s):  
Janelle A. Olson ◽  
Dennis B. Leveson-Gower ◽  
Andreas Beilhack ◽  
Robert S. Negrin

Abstract Natural Killer (NK) cells have the ability to suppress graft-versus-host disease (GVHD) while inducing a graft-versus-tumor response (GVT) during allogeneic bone marrow transplantation (BMT). Previous studies in allogeneic BMT models have shown NK cell trafficking to and proliferation in lymphoid organs and GVHD target organs, which are also sites of donor T cell trafficking. This study aims to investigate the impact of NK cells on alloreactive, GVHD-inducing donor T cells. Interleukin-2 activated allogeneic NK cells isolated from C57Bl6 (H–2b) or FVB (H–2q) animals were transplanted along with T cell-depleted bone marrow into lethally irradiated BALB/c (H–2d) mice, followed 2 days later by luciferase-expressing CD4+ and CD8+ conventional T cells from the same donor strain (NK+Tcon group). Control mice received lethal irradiation and T cell-depleted bone marrow on day 0, and luciferase-expressing T cells on day 2 after transplant (Tcon group). Bioluminescence imaging of NK+Tcon mice revealed a significantly lower T cell bioluminescent signal (p=0.03 for FVB into BALB/c on day 6) than from Tcon mice. CFSE proliferation analysis of alloreactive T cells on day 3 after transplant showed no significant change in the percent of donor T cells that have divided in the spleen, and only a slight decrease in the percent of T cells that have divided in the lymph nodes when NK cells are present. However, at this timepoint 82% of the proliferating cells have divided past the third generation, in contrast to 64% in the NK+Tcon mice. Donor T cells in both groups become equally activated in vivo, expressing similar levels of the early-activation marker CD69. T cells re-isolated from NK+Tcon animals at day 5 stained 2 to 10-fold higher for the TUNEL apoptosis marker than those from Tcon mice in the mesenteric and peripheral lymph nodes, respectively (p<0.0001). Additionally, decreased numbers of T cells were re-isolated from the peripheral lymph nodes in the NK+Tcon group as compared to the Tcon group. This increase in TUNEL staining was not seen when the transplanted NK cells were isolated from a perforin-deficient donor. This indicates that NK cells in lymph nodes use a perforin-dependent mechanism to increase apoptosis in proliferating, alloreactive donor T-cells, which are syngeneic to the transplanted NK cells. Donor T cells re-isolated from the lymph nodes of transplanted mice up-regulate the NKG2D ligand Rae1γ as compared to naïve T cells, as shown by FACS. This suggests that NK cells may cause direct lysis of alloreactive donor T cells in vivo during GVHD induction, mediated by the NK cell activating receptor NKG2D. This study provides crucial mechanistic information regarding the function of NK cells in suppressing GVHD.


2005 ◽  
Vol 73 (8) ◽  
pp. 4913-4921 ◽  
Author(s):  
Crescent L. Combe ◽  
Tyler J. Curiel ◽  
Magali M. Moretto ◽  
Imtiaz A. Khan

ABSTRACT CD8+ T-cell immunity plays an important role in protection against intracellular infections. Earlier studies have shown that CD4+ T-cell help was needed for launching in vivo CD8+ T-cell activity against these pathogens and tumors. However, recently CD4+ T-cell-independent CD8 responses during several microbial infections including those with Toxoplasma gondii have been described, although the mechanism is not understood. We now demonstrate that, in the absence of CD4+ T cells, T. gondii-infected mice exhibit an extended NK cell response, which is mediated by continued interleukin-12 (IL-12) secretion. This prolonged NK cell response is critical for priming parasite-specific CD8+ T-cell immunity. Depletion of NK cells inhibited the generation of CD8+ T-cell immunity in CD4−/− mice. Similarly neutralization of IL-12 reduces NK cell numbers in infected animals and leads to the down-regulation of CD8+ T-cell immunity against T. gondii. Adoptive transfer of NK cells into the IL-12-depleted animals restored their CD8+ T-cell immune response, and animals exhibited reduced mortality. NK cell gamma interferon was essential for cytotoxic T-lymphocyte priming. Our studies for the first time demonstrate that, in the absence of CD4+ T cells, NK cells can play an important role in induction of primary CD8+ T-cell immunity against an intracellular infection. These observations have therapeutic implications for immunocompromised individuals, including those with human immunodeficiency virus infection.


Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3251-3257 ◽  
Author(s):  
He Zhou ◽  
Yunping Luo ◽  
Charles D. Kaplan ◽  
Jörg A. Krüger ◽  
Sung-Hyung Lee ◽  
...  

Abstract The NKG2D receptor is a stimulatory receptor expressed on NK cells and activated CD8 T cells. We previously demonstrated that engaging the NKG2D receptor markedly improved the efficacy of a survivin-based DNA vaccine. The combination vaccine, encoding both the NKG2D ligand H60 and survivin, activates innate and adaptive antitumor immunity and results in better protection against tumors of different origin and NKG2D expression levels. Here we demonstrate that the enhanced vaccine efficacy is in part attributable to increased cross talk between lymphocytes. Depletion of CD8 T cells during priming reduces the vaccine-induced activation of dendritic cells (DCs) and NK cell activity. Depletion of NK cells during priming leads to reduced DC activation and CTL activity. However, depletion of CD4 T cells results in the activation of DCs, NK cells, and CD8 T cells and enhances NK cell activity. The pH60/Survivin vaccine also increases DCs and NK cells but decreases CD4 T cell homing to Peyer patches, presumably as a result of changes in the homing receptor profile. Thus, by preferentially activating and attracting positive regulators and reducing negative regulators in Peyer patches, this dual-function DNA vaccine induces a microenvironment more suitable for NK cell activation and T cell priming.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 45-45
Author(s):  
Geert Westerhuis ◽  
Wendy G. Maas ◽  
Roelof Willemze ◽  
Rene E. Toes ◽  
Willem E. Fibbe

Abstract NK cells are able to eliminate major mismatched hematopoietic cells and, in addition to T cells, represent a second barrier that prevents engraftment following transplantation over MHC barriers. Here, we studied the role of NK cells in the elimination of major mismatched hematopoietic cells in a Balb/c into B6 transplantation model after anti-CD40L (MR1) treatment. In this model, survival of donor cells was determined using an in-vivo cytotoxicity assay based on the infusion of differentially CFSE-labeled syngeneic and donor splenocytes. Likewise, the efficacy of treatment was determined directly by assessing the level of chimerism three months after transplantation. Four weeks after the infusion of 106 bone marrow cells (BMC), B6 mice rejected donor spleen cells within 3 hours. A combination with anti-CD40L treatment prevented this early elimination and these mice showed the same elimination kinetics as observed in untreated mice (97.0 ± 1.3% vs. 96.6 ± 1.3% in 3 days). These results indicate that anti-CD40L treatment prevents the induction of a memory T cell response after infusion of donor BMC. Nonetheless, elimination of donor cells was still present within 3 days, therefore we hypothesized that the elimination of donor cells was mediated by NK cells, rather than by T cells. A detailed analysis of the elimination kinetics in untreated B6 mice showed that the CFSE-labeled Balb/c splenocytes were gradually eliminated starting from the moment of infusion. Similar elimination kinetics were observed in T cell-deficient B6 nu/nu mice. In addition, in-vivo treatment with a depleting anti-NK cell antibody (PK136) prolonged the survival of donor splenocytes in both B6 and B6 nu/nu mice (54.7 ± 2.8% vs. 8.4 ± 5.9% in 2 days in B6 mice and 72.4 ± 7.2% vs. 19.4 ± 8.6% in 1 day in B6 nu/nu mice). A similarly prolonged survival of donor spleen cells was observed in NK cell-depleted mice that had received 106 BMC 4 weeks earlier in combination with anti-CD40L (77.4 ± 15.6% with NK cell depletion vs. 5.3 ± 0.6% without NK cell depletion in 2 days), while no effect was observed after in-vivo treatment with a depleting anti-CD8 antibody. Infusion of increasing numbers of Balb/c BMC (106, 107, 108) after treatment with anti-CD40L resulted in a dose-dependent prolongation of the survival of donor splenocytes, but up to 108 BMC were needed for complete non-responsiveness. This indicated that transplantation of 108 BMC resulted in tolerization of NK cells, which was also associated with stable chimerism (36.1 ± 14.0% of the GR-1+ fraction). In-vivo depletion of NK cells before transplantation allowed stable chimerism in mice treated with anti-CD40L and only 30 x 106 BMC (5/5 vs. 1/5 without NK cell depletion). These data demonstrate that: 1) The elimination of Balb/c donor splenocytes in untreated B6 recipient mice is mediated by NK cells. 2) In mice treated with donor BMC and anti-CD40L the elimination of donor splenocytes can be delayed by NK cell depletion or by increasing the initial dose of donor BMC. 3) NK cell tolerance over MHC barriers can be induced by transplantation of a high number of BMC (108) and results in sustained engraftment and chimerism. 4) Additional NK cell depletion allows sustained chimerism following transplantation of a lower number (30 x 106) of BMC. We conclude that the induction of NK cell tolerance is dependent on the dose of donor BMC injected. This may explain the high numbers of BMC required for engraftment over MHC barriers.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1711-1711
Author(s):  
Yong Zhang ◽  
Surbhi Goel ◽  
Aaron Prodeus ◽  
Utsav Jetley ◽  
Yiyang Tan ◽  
...  
Keyword(s):  
T Cells ◽  
T Cell ◽  
Nk Cells ◽  
Nk Cell ◽  
Class Ii ◽  

Abstract Introduction. Despite the success of autologous chimeric antigen receptor (CAR)-T cells, barriers to a more widespread use of this potentially curative therapy include manufacturing failures and the high cost of individualized production. There is a strong desire for an immediately available cell therapy option; however, development of "off-the-shelf" T cells is challenging. Alloreactive T cells from unrelated donors can cause graft versus host disease (GvHD) for which researchers have successfully used nucleases to reduce expression of the endogenous T cell receptor (TCR) in the allogeneic product. The recognition of allogeneic cells by the host is a complex issue that has not been fully solved to date. Some approaches utilize prolonged immune suppression to avoid immune rejection and increase persistence. Although showing responses in the clinic, this approach carries the risk of infections and the durability of the adoptive T cells is uncertain. Other strategies include deletion of the B2M gene to remove HLA class I molecules and avoid recognition by host CD8 T cells. However, loss of HLA class I sends a "missing-self" signal to natural killer (NK) cells, which readily eliminate B2Mnull T cells. To overcome this, researchers are exploring insertion of the non-polymorphic HLA-E gene, which can provide partial but not full protection from NK cell-mediated lysis. Because activated T cells upregulate HLA class II, rejection by alloreactive CD4 T cells should also be addressed. Methods. Here, we developed an immunologically stealth "off-the-shelf" T cell strategy by leveraging our CRISPR/Cas9 platform and proprietary sequential editing process. To solve the issue of rejection by alloreactive CD4 and CD8 T cells, we knocked out (KO) select HLA class I and class II expression with a sequential editing process. Additionally, we utilize potent TCR-α and -β constant chain (TRAC, TRBC) gRNAs that achieve >99% KO of the endogenous TCR, addressing the risk of GvHD. An AAV-mediated insertion of a CAR or TCR into the TRAC locus is used in parallel with the TRAC KO step to redirect the T cells to tumor targets of interest. Alloreactivity by CD4 and CD8 T cells, NK killing, GvHD induction and T cell function was assessed in vitro and/or in vivo. Results. By knocking out select HLA class I and class II proteins, we were able to avoid host CD4- and CD8-T cell-mediated recognition. Edited T cells were protected from host NK cells, both in vitro and in an in vivo model engrafted with functional human NK cells. TRAC edited donor T cells did not induce GvHD in an immune compromised mouse model over the 90-day evaluation period. Using our proprietary T cell engineering process, we successfully generated allogeneic T cells with sequential KOs and insertion of a tumor-specific TCR or CAR with high yield. Importantly, these allogeneic T cells had comparable functional activity to their autologous T cell counterparts in in vitro assays (tumor cell killing and cytokine release) as well as in vivo tumor models. With a relatively small bank of donors, we can provide an "off-the-shelf" CAR or TCR-T cell solution for a large proportion of the population. Conclusions. We have successfully developed a differentiated "off-the-shelf" approach, which is expected to be safe and cost-effective. It is designed to provide long-term persistence without the need for an immune suppressive regimen. This promising strategy is being applied to our T cell immuno-oncology and autoimmune research candidates. Disclosures Zhang: Intellia Therapeutics: Current Employment. Goel: Intellia Therapeutics: Current Employment. Prodeus: Intellia Therapeutics: Current Employment. Jetley: Intellia Therapeutics: Current Employment. Tan: Intellia Therapeutics: Current Employment. Averill: Intellia Therapeutics: Current Employment. Ranade: Intellia Therapeutics: Current Employment. Balwani: Intellia Therapeutics: Current Employment. Dutta: Intellia Therapeutics: Current Employment. Sharma: Intellia Therapeutics: Current Employment. Venkatesan: Intellia Therapeutics: Current Employment. Liu: Intellia Therapeutics: Current Employment. Roy: Intellia Therapeutics: Current Employment. O′Connell: Intellia Therapeutics: Current Employment. Arredouani: Intellia Therapeutics: Current Employment. Keenan: Intellia Therapeutics: Current Employment. Lescarbeau: Intellia Therapeutics: Current Employment. Schultes: Intellia Therapeutics: Current Employment.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jie Liu ◽  
Shuo Yang ◽  
Bihui Cao ◽  
Guangyu Zhou ◽  
Fengjuan Zhang ◽  
...  

Abstract Background B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. Methods We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. Results B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. Conclusions Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.


2019 ◽  
Vol 116 (36) ◽  
pp. 17951-17956 ◽  
Author(s):  
Jie Geng ◽  
Malini Raghavan

Cluster of differentiation 8 (CD8) is a cell surface glycoprotein, which is expressed as 2 forms, αα homodimer or αβ heterodimer. Peptide-loaded major histocompatibility complex class I (pMHC-I) molecules are major ligands for both forms of CD8. CD8αβ is a coreceptor for the T cell receptor (TCR) and binds to the same cognate pMHC-I as the TCR, thus enabling or augmenting T cell responses. The function of CD8αα homodimers is largely unknown. While CD8αβ heterodimer is expressed exclusively on CD8+ T cells, the CD8αα homodimer is present in subsets of T cells and human natural killer (NK) cells. Here, we report that the CD8αα homodimer functions as a coreceptor for KIR3DL1, an inhibitory receptor of NK cells that is specific for certain MHC-I allotypes. CD8αα enhances binding of pMHC-I to KIR3DL1, increases KIR3DL1 clustering at the immunological synapse, and augments KIR3DL1-mediated inhibition of NK cell activation. Additionally, interactions between pMHC-I and CD8αα homodimers regulate KIR3DL1+ NK cell education. Together, these findings reveal another dimension to the modulation of NK cell activity.


Sign in / Sign up

Export Citation Format

Share Document