Analysis of Salinity from Seawater on Physical and Mechanical Properties of Laminated Bamboo Fiber Composites with an Epoxy Resin Matrix for Ship Skin Materials

2021 ◽  
Vol 15 (7) ◽  
pp. 365
Author(s):  
Parlindungan Manik ◽  
Agus Suprihanto ◽  
Sulardjaka Sulardjaka ◽  
Sri Nugroho
2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2020 ◽  
pp. 095400832095739
Author(s):  
Zibao Jiao ◽  
Zhengjun Yao ◽  
Jintang Zhou ◽  
Pengshu Yi ◽  
Chuanjun Lu

Based on the surface analysis of carbon fiber, an epoxy resin matrix with good wettability to carbon fibers had been developed and studied, and the influence of winding tension on the interface and mechanical properties of the composite were studied. The surface morphology of carbon fiber and the active functional groups of sizing agent were analyzed. In order to form a good interface combination, the wettability between carbon fibers and epoxy resin matrix was characterized by dynamic contact angle. The winding tension played an important role in the mechanical properties of composites. Therefore, a kind of carbon fiber reinforced composites, Naval Ordnance Laboratory (NOL) rings were fabricated using different winding tensions. Particularly, when the winding tension was 30 N, the interfacial bonding between carbon fibers and resin matrix was the most compact and firm. The tensile strength and interlaminar shear strength (ILSS) of NOL rings reached high values, 2712 MPa and 75 MPa, respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nachiappan Sukumar ◽  
Mekonnen Bayeleyegn ◽  
Sampath Aruna

Purpose Recently, composites have concerned considerable importance as a potential operational material. Lots of work have been carried out to enhance the mechanical properties of composites. The main aim of this paper is to develop bamboo mat as reinforcing material with bagasse fiber as filler using epoxy resin matrix composite. Design/methodology/approach In this research, the effect of fiber surface treatments on mechanical properties of epoxy resin composite with bagasse as filler has been developed and investigated. The extracted bamboo fibers were treated with NaOH to improve the surface roughness fiber. Using treated and untreated bamboo fiber handwoven mat has been produced to be used as reinforcement and bagasse fiber has been converted into powder to be filled as filler. Composite material is fabricated using bamboo fiber and bagasse fiber as filler with epoxy resin as a matrix using hand layup technique. Findings Then, tensile, flexural and compressive strength and water absorption tests were conducted on sodium hydroxide treated and untreated fiber composites. The test results comparing with and without alkali treated composites show that there was significant change in their strength and water absorption properties on alkali treated fiber. Originality/value This study is an original research paper.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2058 ◽  
Author(s):  
George Soupionis ◽  
Pantelitsa Georgiou ◽  
Loukas Zoumpoulakis

The present paper deals with the use of polymeric matrix composite materials reinforced with carbon fiber as concrete shear reinforcement materials. Accordingly, cement specimens were manufactured and coated with various types of carbon fabrics and epoxy resin in liquid and solid form (paste). Additionally, composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were manufactured. In all the specimens, the mechanical properties were estimated; the cement samples coated with composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were tested for compressive strength, while the other specimens were tested for shear and bending strength. The specimens were subjected to artificial aging through heat treatment for 8, 12 and 16 days. During the process of artificial aging, the temperature in the chamber reached the range of 65–75 °C. These composite materials exhibited high mechanical properties combined with adaptability. Both an external deterioration of the materials as well as a reduction in mechanical properties during their artificial aging heat treatment were observed. This was shown in the specimens that were not subjected to artificial aging, with an applied compression strength of 74 MPa, and after the artificial aging, there was a decrease of ~7%, with the compression strength being reduced to 68 MPa.


RSC Advances ◽  
2016 ◽  
Vol 6 (58) ◽  
pp. 52596-52603 ◽  
Author(s):  
Meiling Li ◽  
Huaiyuan Wang ◽  
Dujuan Liu ◽  
Rui Wang ◽  
Yanji Zhu

A self-lubrication composite incorporating activated carbon particles containing lubricating oil (AC-oil) was fabricated in an epoxy resin matrix.


Sign in / Sign up

Export Citation Format

Share Document