Reinforced interface and mechanical properties of high strength carbon fiber composites

2020 ◽  
pp. 095400832095739
Author(s):  
Zibao Jiao ◽  
Zhengjun Yao ◽  
Jintang Zhou ◽  
Pengshu Yi ◽  
Chuanjun Lu

Based on the surface analysis of carbon fiber, an epoxy resin matrix with good wettability to carbon fibers had been developed and studied, and the influence of winding tension on the interface and mechanical properties of the composite were studied. The surface morphology of carbon fiber and the active functional groups of sizing agent were analyzed. In order to form a good interface combination, the wettability between carbon fibers and epoxy resin matrix was characterized by dynamic contact angle. The winding tension played an important role in the mechanical properties of composites. Therefore, a kind of carbon fiber reinforced composites, Naval Ordnance Laboratory (NOL) rings were fabricated using different winding tensions. Particularly, when the winding tension was 30 N, the interfacial bonding between carbon fibers and resin matrix was the most compact and firm. The tensile strength and interlaminar shear strength (ILSS) of NOL rings reached high values, 2712 MPa and 75 MPa, respectively.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2058 ◽  
Author(s):  
George Soupionis ◽  
Pantelitsa Georgiou ◽  
Loukas Zoumpoulakis

The present paper deals with the use of polymeric matrix composite materials reinforced with carbon fiber as concrete shear reinforcement materials. Accordingly, cement specimens were manufactured and coated with various types of carbon fabrics and epoxy resin in liquid and solid form (paste). Additionally, composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were manufactured. In all the specimens, the mechanical properties were estimated; the cement samples coated with composite materials of epoxy resin matrix reinforced with carbon fiber fabrics were tested for compressive strength, while the other specimens were tested for shear and bending strength. The specimens were subjected to artificial aging through heat treatment for 8, 12 and 16 days. During the process of artificial aging, the temperature in the chamber reached the range of 65–75 °C. These composite materials exhibited high mechanical properties combined with adaptability. Both an external deterioration of the materials as well as a reduction in mechanical properties during their artificial aging heat treatment were observed. This was shown in the specimens that were not subjected to artificial aging, with an applied compression strength of 74 MPa, and after the artificial aging, there was a decrease of ~7%, with the compression strength being reduced to 68 MPa.


2020 ◽  
Vol 10 (3) ◽  
pp. 1159 ◽  
Author(s):  
Yingmei Xie ◽  
Hiroki Kurita ◽  
Ryugo Ishigami ◽  
Fumio Narita

Epoxy resins are a widely used common polymer due to their excellent mechanical properties. On the other hand, cellulose nanofiber (CNF) is one of the new generation of fibers, and recent test results show that CNF reinforced polymers have high mechanical properties. It has also been reported that an extremely low CNF addition increases the mechanical properties of the matrix resin. In this study, we prepared extremely-low CNF (~1 wt.%) reinforced epoxy resin matrix (epoxy-CNF) composites, and tried to understand the strengthening mechanism of the epoxy-CNF composite through the three-point flexural test, finite element analysis (FEA), and discussion based on organic chemistry. The flexural modulus and strength were significantly increased by the extremely low CNF addition (less than 0.2 wt.%), although the theories for short-fiber-reinforced composites cannot explain the strengthening mechanism of the epoxy-CNF composite. Hence, we propose the possibility that CNF behaves as an auxiliary agent to enhance the structure of the epoxy molecule, and not as a reinforcing fiber in the epoxy resin matrix.


2020 ◽  
pp. 095400832095706
Author(s):  
Jennifer Vinodhini ◽  
K Sudheendra ◽  
Meera Balachandran ◽  
Shantanu Bhowmik

This investigation highlights argon plasma treatment on Poly-aryl-ether-ketone (PAEK) and carbon fibre (CF) surface. The PAEK and CF surface is modified for 300 sec and the change in physiochemical and mechanical properties were investigated through Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Contact angle, Atomic Force Microscope (AFM) and Tensile Test. FTIR of surface modified PAEK revealed the stretching of C-H, C=C and C=O functional groups. A reversal phenomenon of increased surface energy was observed through dynamic contact angle study of CF and to further examine the surface energy effect, AFM analysis on CF was carried out revealing increased roughness with numerous micro dents formation. PAEK/CF composite samples were fabricated through compression moulding technique. The change in mechanical properties due to surface modification were analysed through Tensile testing on surface modified PAEK/CF sample and untreated PAEK/CF samples. The surface treated PAEK/CF showed increased tensile strength than untreated PAEK/CF. The argon plasma treatment helped in creating depth striations that lead to better interlocking of resin matrix with the reinforced CF. The fracture surface was examined through Filed Emission Scanning Electron Microscope (FE-SEM) wherein the Micrographs of the tensile tested samples indicated failure of composite due to fibre breakage.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 684 ◽  
Author(s):  
Chukov ◽  
Nematulloev ◽  
Zadorozhnyy ◽  
Tcherdyntsev ◽  
Stepashkin ◽  
...  

The paper studies new high-temperature thermoplastic impregnated unidirectional carbon fiber composites. The research focuses on the effect of thermal and chemical oxidation of the carbon fibers surface on the interfacial interaction between fibers and polysulfone and polyphenylene sulfide as well as thermal and mechanical properties of the composites. The research reveals the interaction between carbon fibers and the polymer matrix depend both on the type of surface treatment and nature of the polymer. The chemical oxidation of carbon fibers results in good interfacial interaction, and the best mechanical properties were observed for tows impregnated with polyphenylene sulfide.


2006 ◽  
Vol 11-12 ◽  
pp. 517-520 ◽  
Author(s):  
Dong Lin Zhao ◽  
Ren Hai Qiao ◽  
Cheng Zhong Wang ◽  
Zeng Min Shen

The carbon nanotubes (CNTs) were prepared by catalytic decompose of benzene using floating transition method at 1100-1200°C. Benzene was used as carbon source and ferrocene as catalyst with thiophene. The carbon nanotubes are straight with diameter 20-50 nm, internal diameter 10-30 nm and length 50-1000 μm. The carbon nanotube and continuous carbon fiber (T300) reinforced unidirectional epoxy resin matrix composites was fabricated. The volune fraction of continuous carbon fiber (first filler) in the composites without second filler (carbon nanotube) was 60%. The mechanical properties of the composites were investigated under bending, shear, and impact loading. The flexural strength and modulus of the composites increased firstly and then decreased with the increasing of carbon nanotube contents in epoxy resin matrix. The flexural strength of the composites reached the maximum value of 1780 MPa when the weight percent of carbon nanotube in epoxy resin matrix was 3%.


Sign in / Sign up

Export Citation Format

Share Document