scholarly journals Directional radiation pattern of surface wave antenna using dogbone structure

2012 ◽  
Vol 1 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Yuta Tanogashira ◽  
Takeshi Fukusako
Author(s):  
Manvinder Sharma ◽  
Harjinder Singh

Background & Objective: Internet of things devices managed by wireless networks so that higher data rates can be achieved. With increase in demand of usage of Internet microwave signals are capable for delivering the demand. However these high frequency waves needs a waveguide to propagate otherwise they get affected due to atmospheric attenuation and rain fade. a modified structure of rectangular waveguide is used named as Substrate Integrated Waveguide (SIW). In this paper, the work has been carried out taking SIW and Leaky Wave Antenna. The dielectric substrate was taken as carbon. Modeling of SIW Leaky wave Antenna is done by making C shaped Slots. Design steps for modeling LWA were orderly pursued also optimized with various equations followed by Finite Element Method based modeling. A range of frequency as input is taken from 7 GHz to 11 GHz to take the analysis of design modeled. Results & Conclusion: The result shows the electric field intensity and radiation pattern is directly proportional with frequency while the return loss is acceptable for applied frequency range. The proposed antenna can radiate in omni directional radiation pattern hence can be used to connect devices with IoT.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Qiang Bai ◽  
Kenneth L. Ford ◽  
Richard J. Langley

This paper presents a novel switchable electromagnetic bandgap surface wave antenna that can support both a surface wave and normal mode radiation for communications at 2.45 GHz. In the surface wave mode, the antenna has a monopole-like radiation pattern with a measured gain of 4.4 dBi at ±49° and a null on boresight. In the normal mode, the antenna operates like a back-fed microstrip patch antenna.


Author(s):  
Melvin Chamakalayil Jose ◽  
Radha Sankararajan ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract In the proposed research paper, a novel compact, ultra-wideband electronically switchable dual-band omnidirectional to directional radiation pattern microstrip planar printed rectangular monopole antenna (PRMA) has been presented. The proposed antenna system has an optimum size of 0.26 λ0 × 0.28 λ0. A combination of radiators, reflectors, and two symmetrical grounds does place on the same layer of the rectangular microstrip PRMA. The frequency agility and the radiation pattern from omnidirectional to directional are achieved using two SMD PIN diodes (SMP1340-04LF). The directional radiation patterns with 180° phase shifts are achieved at the C-band frequency spectrum. The parametric study of the proposed antenna system was performed for different design parameters, and the antenna characteristics were analyzed. An antenna prototype is fabricated using the printed circuit board etching method by using RMI UV laser etching and cutting tools. The measurements of the proposed antenna are conducted in an anechoic chamber to validate the simulations. There are three states of operations due to two SMD PIN diodes being used in switching circuits. In state-I, the proposed antenna radiates at 6.185 GHz (5.275–6.6 75 GHz) in the Ф = 270° direction with a gain of 2.1 dBi, whereas in state-II, it radiates at 5.715 GHz (5.05–6.8 GHz) in the Ф = 90° direction with a gain of 2.1 dBi. In state-III, the antenna exhibits the X-band frequency with center frequency at 9.93 GHz (8.845–10.49 GHz), and the omnidirectional pattern offers a gain of 4.1 dBi. The features of the proposed antenna are suitable for high-speed wireless sensor network communication in industries such as chemical reactors in oil and gas and pharmaceuticals. It is also well suited for IoT and 5G-sub-6-GHz applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyyed Mohammad Mehdi Moshiri ◽  
Najmeh Nozhat

AbstractIn this paper, an optical smart multibeam cross dipole nano-antenna has been proposed by combining the absorption characteristic of graphene and applying different arrangements of directors. By introducing a cross dipole nano-antenna with two V-shaped coupled elements, the maximum directivity of 8.79 dBi has been obtained for unidirectional radiation pattern. Also, by applying various arrangements of circular sectors as director, different types of radiation pattern such as bi- and quad-directional have been attained with directivities of 8.63 and 8.42 dBi, respectively, at the wavelength of 1550 nm. The maximum absorption power of graphene can be tuned by choosing an appropriate chemical potential. Therefore, the radiation beam of the proposed multibeam cross dipole nano-antenna has been controlled dynamically by applying a monolayer graphene. By choosing a suitable chemical potential of graphene for each arm of the suggested cross dipole nano-antenna without the director, the unidirectional radiation pattern shifts ± 13° at the wavelength of 1550 nm. Also, for the multibeam nano-antenna with different arrangements of directors, the bi- and quad-directional radiation patterns have been smartly modified to uni- and bi-directional ones with the directivities of 10.1 and 9.54 dBi, respectively. It is because of the graphene performance as an absorptive or transparent element for different chemical potentials. This feature helps us to create a multipath wireless link with the capability to control the accessibility of each receiver.


1996 ◽  
Vol 143 (1) ◽  
pp. 1 ◽  
Author(s):  
G. Fikioris ◽  
R.W.P. King ◽  
T.T. Wu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document